Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
基本信息
- 批准号:10540708
- 负责人:
- 金额:$ 62.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAchievementAcuteAddressAdverse eventAftercareAneurysmAnimal ModelArteriesBiologicalBlood VesselsBlood specimenBrain AneurysmsCircle of WillisClinicalClinical ResearchComplexComplicationComputer ModelsDataDepositionDevice DesignsDevice SafetyDevice or Instrument DevelopmentDevicesDistalEndotheliumEngineeringEvaluationEventFibrinFibrinogenFundingFutureGenerationsGrowthHemorrhageImageInterdisciplinary StudyInternal carotid artery structureIntracranial AneurysmIschemiaKnowledgeLegal patentLiquid substanceModelingMonitorMorphologyNeckOryctolagus cuniculusOutcomeParentsPatient CarePatientsPerforationPhysiologic pulsePlatelet ActivationProteinsReproducibilityResearch PersonnelResearch ProposalsRiskRisk FactorsRoleRuptured AneurysmSafetySideStatistical MethodsStrokeSuperior Mesenteric Artery BranchSuperior mesenteric artery structureSystemTechnologyTestingThrombinThrombosisTissue EngineeringTranslational ResearchWorkbiomarker discoverycell motilitycirculating microRNAclinical applicationclinical implementationclinical translationdensityfollow-uphealinghemodynamicsimplantationimprovedimproved outcomein silicoin vitro Modelin vivoindividual patientinnovationmicroRNA biomarkersmolecular imagingmultidisciplinarymultimodalitynext generationnovelpatient variabilityplatelet functionpoint of carepreventrepositoryresponsestent thrombosistherapeutic targetthrombotic complicationstooltranslational research program
项目摘要
PROJECT SUMMARY
This competitive renewal application focuses on advancing the field of intracranial flow diversion (FDs), that
currently constitutes approximately one-third of the treatment of unruptured intracranial aneurysms. There
remain key gaps in the knowledge that hinder expansion of the clinical application of these transformational
devices, which to date are limited in scope to unruptured, proximal aneurysms along the internal carotid artery.
We envision that, with our proposed discovery system, we will facilitate application of novel, next-generation
devices in ruptured aneurysms and in aneurysms distal to the Circle of Willis, and will allow customization of
approaches to minimize thromboembolic risk in individual patients. We will break down these barriers to
expanded utility by 1) understanding of key aspects of aneurysm occlusion, such as the role of acute and
appropriate fibrin deposition across the aneurysm neck, 2) unraveling the mechanisms underlying side branch
occlusion (i.e. the impact of hemodynamic, or neointimal growth and endothelizalization across the side branch
ostia, or both), and 3) identifying the potential risk factors that cause elevated risk of thromboembolic
complications, such as hemodynamical variable, device malapposition, platelet function, and untoward fibrin
deposition beyond the neck of the aneurysm, among others. We propose to employ innovative approaches in
in vivo intravascular fibrin molecular imaging, computational fluid dynamics modeling, and improved animal
modeling, and finally biomarker discovery in clinical studies. These approaches can improve the outcome of
not only FD, but other devices in treating aneurysms by better understanding of the mechanisms of both
aneurysm healing and complications. Our robust and reproducible methods of statistical evaluations will
directly assess 1) the role of fibrin deposition rapidity in the device at the neck of the aneurysm aids robust
aneurysm, 2) the suitability and validity of the superior mesenteric artery branches to simulate the patency of
the small perforating vessels covered by FDs, and 3) correlate biological and imaging data with delayed
ischemic events following FD therapy.The discoveries from this hypothesis-driven, multidisciplinary,
multimodality, clinical-translational research will provide a robust understanding of not only the mechanism of
action of FDs in aneurysm healing, but also the development of device-related complications. These
discoveries can provide guidance to clinicians using current technologies to optimize outcomes and minimize
complications, as well as investigators and engineers to develop improved devices. Ultimately, this information
will allow neurointerventionalists to make better informed decisions on device choice, leading to improved
patient care.
项目摘要
这种竞争性更新应用的重点是推进颅内流动转移(FDS)的领域,该领域是
目前,构成了未破裂的颅内动脉瘤的三分之一。那里
在妨碍这些转化的临床应用扩展的知识中,仍然是关键差距
迄今为止,其范围限制的装置沿颈内动脉近端动脉瘤限制。
我们设想,借助我们提出的发现系统,我们将促进新颖的下一代应用
在威利斯圆圈远端的动脉瘤和动脉瘤中破裂的设备,将允许自定义
减少个别患者血栓栓塞风险的方法。我们将把这些障碍分解为
通过1)了解动脉瘤阻塞的关键方面,例如急性和
在整个动脉瘤颈上的适当纤维蛋白沉积,2)揭开侧面分支的机制
闭塞(即血液动力学或新内膜生长和内皮化的影响
OSTIA,或两者兼而有之3)识别导致血栓栓塞风险升高的潜在风险因素
并发症,例如血液动力学变量,设备不正确,血小板功能和不愉快的纤维蛋白
在动脉瘤等脖子之外的沉积。我们建议采用创新的方法
体内血管内纤维蛋白分子成像,计算流体动力学建模和改善的动物
建模,最后是临床研究中的生物标志物发现。这些方法可以改善
不仅FD,而且通过更好地理解两者的机制来治疗动脉瘤的其他设备
动脉瘤愈合和并发症。我们的统计评估的强大而可重复的方法将
直接评估1)纤维蛋白沉积快速速度在动脉瘤颈部的设备中的作用有帮助
动脉瘤,2)上肠系膜分支的适用性和有效性,以模拟
FD覆盖的小型穿孔容器,以及3)将生物学和成像数据与延迟相关联
FD治疗后的缺血事件。从这个假设驱动的多学科的发现,
多模式性,临床翻译研究将不仅提供对机制的强烈理解
FD在动脉瘤愈合中的作用,也是与设备相关并发症的发展。这些
发现可以使用当前技术为临床医生提供指导,以优化结果并最小化
并发症以及研究人员和工程师开发改进的设备。最终,这些信息
将允许神经介入主义者对设备选择做出更好的明智决定,从而改善
病人护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan R Cebral其他文献
Juan R Cebral的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan R Cebral', 18)}}的其他基金
Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
- 批准号:
10363267 - 财政年份:2021
- 资助金额:
$ 62.51万 - 项目类别:
Improving Cerebral Aneurysm Risk Assessment through Understanding Wall Vulnerability and Failure Modes
通过了解壁的脆弱性和失效模式改进脑动脉瘤风险评估
- 批准号:
10398949 - 财政年份:2016
- 资助金额:
$ 62.51万 - 项目类别:
Improving Cerebral Aneurysm Risk Assessment through Understanding Wall Vulnerability and Failure Modes
通过了解壁的脆弱性和失效模式改进脑动脉瘤风险评估
- 批准号:
10621168 - 财政年份:2016
- 资助金额:
$ 62.51万 - 项目类别:
Improved Evaluation of PCOM Aneurysms: Angio-Architecture, Hemodynamics and Shape
改进 PCOM 动脉瘤的评估:血管结构、血流动力学和形状
- 批准号:
9144876 - 财政年份:2015
- 资助金额:
$ 62.51万 - 项目类别:
The link between hemodynamics and wall structure in cerebral aneurysms
脑动脉瘤血流动力学与壁结构之间的联系
- 批准号:
8609084 - 财政年份:2013
- 资助金额:
$ 62.51万 - 项目类别:
The link between hemodynamics and wall structure in cerebral aneurysms
脑动脉瘤血流动力学与壁结构之间的联系
- 批准号:
8512060 - 财政年份:2013
- 资助金额:
$ 62.51万 - 项目类别:
Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
- 批准号:
9284516 - 财政年份:2011
- 资助金额:
$ 62.51万 - 项目类别:
Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
- 批准号:
9175421 - 财政年份:2011
- 资助金额:
$ 62.51万 - 项目类别:
Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
- 批准号:
9750816 - 财政年份:2011
- 资助金额:
$ 62.51万 - 项目类别:
Computational Analysis of Cerebral Aneurysm Evolution
脑动脉瘤演化的计算分析
- 批准号:
7617027 - 财政年份:2007
- 资助金额:
$ 62.51万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Interactive hand hygiene training for special education pre-vocational students
特教职前学生互动式手卫生培训
- 批准号:
10761562 - 财政年份:2023
- 资助金额:
$ 62.51万 - 项目类别:
Diversity Supplement for Development of a Miniaturized Wearable Ultrasonic Beam-forming Device for Localized Targeting of Brain Regions in Freely-moving Experimental Subjects
开发微型可穿戴超声波束形成装置的多样性补充,用于对自由移动实验对象的大脑区域进行局部瞄准
- 批准号:
10786355 - 财政年份:2023
- 资助金额:
$ 62.51万 - 项目类别:
Diversity Supplement for Development of a Miniaturized Wearable Ultrasonic Beam-forming Device for Localized Targeting of Brain Regions in Freely-moving Experimental Subjects
开发微型可穿戴超声波束形成装置的多样性补充,用于对自由移动实验对象的大脑区域进行局部瞄准
- 批准号:
10786256 - 财政年份:2023
- 资助金额:
$ 62.51万 - 项目类别:
Development of a Miniaturized Wearable Ultrasonic Beam-forming Device for Localized Targeting of Brain Regions in Freely-moving Experimental Subjects
开发微型可穿戴超声波束形成装置,用于对自由移动实验对象的大脑区域进行局部瞄准
- 批准号:
10693964 - 财政年份:2022
- 资助金额:
$ 62.51万 - 项目类别:
No-Touch High Resolution Optical Coherence Elastography of the Cornea using a Heartbeat
使用心跳进行角膜非接触式高分辨率光学相干弹性成像
- 批准号:
10705274 - 财政年份:2022
- 资助金额:
$ 62.51万 - 项目类别: