Multiscale modeling of cerebral blood flow and oxygen transport
脑血流和氧运输的多尺度建模
基本信息
- 批准号:10231113
- 负责人:
- 金额:$ 39.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlzheimer&aposs DiseaseArizonaArteriesBehaviorBiological ProcessBloodBlood VesselsBlood capillariesBlood flowBrainBrain InjuriesBrain imagingCaliberCardiovascular systemCerebral cortexCerebrovascular CirculationCerebrumChronicComputer ModelsDataDevelopmentDiseaseErythrocytesFunctional Magnetic Resonance ImagingGenerationsGoalsHomeostasisHypertensionHypotensionHypoxiaImageImpairmentIndividualLeadLinkLiteratureMapsMeasuresMechanicsMetabolicMethodsMicrocirculationMicroscopicModelingMultimodal ImagingMusNeurodegenerative DisordersNormal RangeOptical Coherence TomographyOxygenOxyhemoglobinPathologicPerfusionPhysiologicalPhysiologyPropertyRegulationReportingResistanceResolutionRoleStimulusStriated MusclesStrokeStructureTestingTheoretical modelTissuesUniversitiesValidationVascular SystemVascular blood supplyWorkarteriolebaseblood perfusionbrain tissueexperimental groupexperimental studyhemodynamicsimprovedin vivoinsightmedical schoolsmicroscopic imagingmodel developmentmulti-scale modelingnanoprobeneurovascularneurovascular couplingnext generationoxygen transportparallel computerphosphorescencephysical processpredictive modelingrelating to nervous systemresponsesimulationthree dimensional structuretissue oxygenationtwo photon microscopy
项目摘要
The overall goal of this proposal is to gain quantitative understanding of the relationship between
neural activation, blood flow and tissue oxygenation in the brain cortex, using multiscale theoretical
models for blood flow, oxygen transport and flow regulation in networks of microvessels. Adequate
blood flow to meet spatially and temporally varying demands of brain tissue is crucial, since lack of oxygen
quickly leads to irreversible damage. The mechanisms by which blood flow is controlled are poorly understood.
Multiple interactions between neural activity, metabolite levels, changes in vascular tone, network blood flow,
and oxygen transport are difficult to unravel, and cannot be understood just by observing behavior of individual
blood vessels. In the proposed work, the detailed structure of microvessel networks with thousands of
segments in the mouse cerebral cortex will be imaged using two-photon microscopy. Observations using
phosphorescence quenching nanoprobes will yield high resolution maps of tissue oxygen levels. Spectral
domain optical coherence tomography will be used to measure blood flows. The multiscale modeling approach
simulates biological and physical processes at the capillary diameter and cellular scale (~10 μm, including flow
mechanics and active responses of vessel walls to hemodynamic, neural and metabolic stimuli), at the vessel
scale (~100 μm, including segment flow resistance, oxygen loss and propagation of conducted responses
along vessel walls) and at the network and tissue scale (~1000 μm, including entire network flows, perfusion,
oxygen extraction and tissue hypoxic fraction). Specific Aim 1 is to develop predictive multiscale models
for blood flow and oxygen transport in the mouse cerebral cortex, and validate these models using
experimental data derived from multimodal imaging of the cortex microvasculature. The proposed
studies will provide a model that will reconcile available data at the microscopic level with macroscopic level
variables such as perfusion and oxygen extraction and will allow prediction of tissue oxygenation and
occurrence of hypoxia for a range of blood perfusion and oxygen demand. Specific Aim 2 is to develop
multiscale models for blood flow autoregulation and neurovascular coupling in the mouse cerebral
cortex, and to test and refine these models using experimental data derived from multimodal imaging
of the cortical microvasculature. The models will include effects of myogenic, metabolic, shear-dependent
and conducted responses, as well as the possible role of capillary-level regulation. Models including or
excluding these mechanisms will be tested for their ability to represent actual regulatory responses, as
reported in the literature and as observed in multimodal imaging experiments under varying physiological
conditions. Improved understanding of the mechanisms of flow regulation could lead to improved strategies for
disorders related to neurovascular function, including stroke and neurodegenerative diseases, and for
interpreting fMRI brain imaging.
该提案的总体目标是定量了解之间的关系
使用多尺度理论,大脑皮层的神经激活、血流和组织氧合
微血管网络中的血流、氧气运输和流量调节模型。
满足脑组织在空间和时间上变化的需求的血流量至关重要,因为缺氧
很快就会导致不可逆转的损伤。人们对控制血流的机制知之甚少。
神经活动、代谢水平、血管张力变化、网络血流、
和氧气的运输很难解开,并且不能仅通过观察个体的行为来理解
在拟议的工作中,微血管网络的详细结构具有数千个。
小鼠大脑皮层的各个部分将使用双光子显微镜进行观察成像。
磷光猝灭纳米探针将产生组织氧水平的高分辨率图。
域光学相干断层扫描将用于测量血流。
模拟毛细管直径和细胞尺度(~10 μm,包括流量
血管壁对血流动力学、神经和代谢刺激的力学和主动反应)
规模(~100 μm,包括段流阻、氧损失和传导响应的传播
沿着血管壁)以及网络和组织尺度(~1000 μm,包括整个网络流动、灌注、
具体目标 1 是开发预测性多尺度模型
用于小鼠大脑皮层的血流和氧气运输,并使用以下方法验证这些模型
实验数据来自皮层微血管系统的多模态成像。
研究将提供一个模型,将微观层面和宏观层面的现有数据进行协调
诸如灌注和氧气提取等变量,将允许预测组织氧合和
发生缺氧的血液灌注和需氧量的具体目标2是制定的。
小鼠大脑血流自动调节和神经血管耦合的多尺度模型
皮层,并使用来自多模态成像的实验数据来测试和完善这些模型
该模型将包括肌源性、代谢性、剪切依赖性的影响。
并进行了回应,以及毛细管水平调节的可能作用,包括或。
排除这些机制将测试它们代表实际监管反应的能力,因为
文献中报道以及在不同生理条件下的多模态成像实验中观察到
更好地了解流量调节机制可能会导致改进策略。
与神经血管功能相关的疾病,包括中风和神经退行性疾病,以及
解释功能磁共振成像脑成像。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conditions for Kir-induced bistability of membrane potential in capillary endothelial cells.
Kir 诱导毛细血管内皮细胞膜电位双稳定性的条件。
- DOI:10.1016/j.mbs.2022.108955
- 发表时间:2023
- 期刊:
- 影响因子:4.3
- 作者:Delmoe,Madison;Secomb,TimothyW
- 通讯作者:Secomb,TimothyW
A fast computational model for circulatory dynamics: effects of left ventricle-aorta coupling.
- DOI:10.1007/s10237-023-01690-w
- 发表时间:2023-06
- 期刊:
- 影响因子:3.5
- 作者:Moulton, Michael J. J.;Secomb, Timothy W. W.
- 通讯作者:Secomb, Timothy W. W.
Effects of pulmonary flow heterogeneity on oxygen transport parameters in exercise.
- DOI:10.1016/j.resp.2018.10.004
- 发表时间:2019-03
- 期刊:
- 影响因子:2.3
- 作者:Roy TK;Secomb TW
- 通讯作者:Secomb TW
The Relation Between Capillary Transit Times and Hemoglobin Saturation Heterogeneity. Part 2: Capillary Networks.
- DOI:10.3389/fphys.2018.01296
- 发表时间:2018
- 期刊:
- 影响因子:4
- 作者:Lücker A;Secomb TW;Barrett MJP;Weber B;Jenny P
- 通讯作者:Jenny P
Analysis of potassium ion diffusion from neurons to capillaries: Effects of astrocyte endfeet geometry.
钾离子从神经元到毛细血管的扩散分析:星形胶质细胞末端几何形状的影响。
- DOI:10.1111/ejn.16232
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Djurich,Sara;Secomb,TimothyW
- 通讯作者:Secomb,TimothyW
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy W. Secomb其他文献
Timothy W. Secomb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy W. Secomb', 18)}}的其他基金
Computational and mathematical modeling of biomedical systems
生物医学系统的计算和数学建模
- 批准号:
10629316 - 财政年份:2019
- 资助金额:
$ 39.79万 - 项目类别:
Computational and mathematical modeling of biomedical systems
生物医学系统的计算和数学建模
- 批准号:
10186774 - 财政年份:2019
- 资助金额:
$ 39.79万 - 项目类别:
Computational and mathematical modeling of biomedical systems
生物医学系统的计算和数学建模
- 批准号:
10408143 - 财政年份:2019
- 资助金额:
$ 39.79万 - 项目类别:
Multiscale modeling of cerebral blood flow and oxygen transport
脑血流和氧运输的多尺度建模
- 批准号:
9762190 - 财政年份:2017
- 资助金额:
$ 39.79万 - 项目类别:
Multiscale modeling of cerebral blood flow and oxygen transport
脑血流和氧运输的多尺度建模
- 批准号:
9981793 - 财政年份:2017
- 资助金额:
$ 39.79万 - 项目类别:
Computational and mathematical modeling of biomedical systems
生物医学系统的计算和数学建模
- 批准号:
8508948 - 财政年份:2009
- 资助金额:
$ 39.79万 - 项目类别:
Computational and Mathematical Modeling of Biomedical Systems
生物医学系统的计算和数学建模
- 批准号:
9291468 - 财政年份:2009
- 资助金额:
$ 39.79万 - 项目类别:
Computational and mathematical modeling of biomedical systems
生物医学系统的计算和数学建模
- 批准号:
7633931 - 财政年份:2009
- 资助金额:
$ 39.79万 - 项目类别:
Computational and Mathematical Modeling of Biomedical Systems
生物医学系统的计算和数学建模
- 批准号:
9059103 - 财政年份:2009
- 资助金额:
$ 39.79万 - 项目类别:
Computational and mathematical modeling of biomedical systems
生物医学系统的计算和数学建模
- 批准号:
7883859 - 财政年份:2009
- 资助金额:
$ 39.79万 - 项目类别:
相似国自然基金
小胶质细胞特异罕见易感突变介导相分离影响阿尔茨海默病发病风险的机制
- 批准号:82371438
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
OATPs介导Aβ/p-Tau转运对阿尔茨海默病病理机制形成及治疗影响的研究
- 批准号:82360734
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
超细颗粒物暴露对阿尔茨海默病的影响及其机制研究
- 批准号:82373532
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于个体水平的空气环境暴露组学探讨影响阿尔茨海默病的风险因素
- 批准号:82304102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用小鼠模型研究Y染色体丢失对阿尔茨海默病的影响及分子机制
- 批准号:32260148
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 39.79万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 39.79万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 39.79万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 39.79万 - 项目类别: