Cost effective Electroencephalography sensor for monitoring sleep disruption in early stages of Alzheimer's disease
具有成本效益的脑电图传感器,用于监测阿尔茨海默病早期阶段的睡眠中断
基本信息
- 批准号:10213321
- 负责人:
- 金额:$ 23.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesivesAdoptedAffectAllelesAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAlzheimer&aposs disease patientAlzheimer&aposs disease riskAlzheimer’s disease biomarkerAmplifiersArousalBiological MarkersBluetoothBody measure procedureComputer softwareComputersDataData Storage and RetrievalDementiaDevelopmentDevicesEarly DiagnosisEarly InterventionElectrodesElectroencephalographyElementsFrequenciesGoalsGrasshoppersHairHeadHealth Care CostsHomeImpaired cognitionIndividualInterventionKnowledgeLateralLegLocationMeasurementMonitorMorphologic artifactsMovementNeurobehavioral ManifestationsObstructive Sleep ApneaOperating SystemPatient CarePatternPeriodicityPhenotypePolysomnographyPopulationPublic DomainsREM SleepResearchResearch PersonnelRisk FactorsRunningSideSignal TransductionSkinSleepSleep ArchitectureSleep StagesSleep disturbancesStructureSurfaceSystemTestingTractionVoiceWakefulnessWireless Technologyabeta accumulationactigraphyaging populationapolipoprotein E-4basecostcost effectivecost effectivenessdensitydesignearly detection biomarkerseffective interventionelectric impedanceexperiencefootgrasphuman subjectmicrophonemiddle agenext generationnon rapid eye movementnovelplatform-independentpre-clinicalprogramsrapid eye movementrisk variantsensorspecific biomarkerssuccesstooltransmission processuser-friendly
项目摘要
Project Summary/abstract
Sleep disruption affects 25–40% of Alzheimer's disease (AD) patients with mild to moderate dementia.
Disruption in sleep architecture, distinct from obstructive sleep apnea, is a biomarker highly correlated to the early
stages of AD and APOE e4 allele risk factors. Sleep sensors measuring body movement (actigraphy) cannot detect the
cyclical patterns that shift between non-rapid eye movement (NREM) and rapid eye movement (REM) sleep stages.
Accurate monitoring of sleep architecture requires electroencephalograph (EEG) recordings. Home-based EEG sensors
are far from ideal as they are expensive and not comfortable to wear on a daily basis. Large efforts are still needed
towards the improvement of electrodes, wireless signal transmission, and overall cost-effectiveness. Being low cost and
easy to use are essential factors necessary for public acceptance of large-scale measurements with millions of users. The
goal of this proposal is to develop an optimized, cost-effective, EEG sensor for home use.
We propose an integrated approach to achieve cost-effectiveness and reliability by combining novel electrodes,
amplifiers, Bluetooth transmission, and the battery on a single soft headband.
SA1. Optimized EEG electrodes for reliable recording. Electrode design is the most critical element for high
signal quality and a friendly user experience. We will test a number of novel self-adhesive electrodes inspired by gecko
feet and grasshopper legs. These novel surfaces may bring large lateral grip force to stabilize the electrode over the skin,
which may greatly reduce the artifact caused by relative movement between the skin and the electrode.
SA2. Platform independent wireless transmission and data storage. We propose platform-independent
Bluetooth wireless signal transmission to existing cellphones. As cellphones are widely used in the older and middle-
aged population, recording and storage of EEG data on user's own cellphone is a cost-effective solution for large-scale
use. We will use conventional voice recording APPs in every cellphone for data storage and a Bluetooth microphone for
transmitting data from the headband to the user's cellphone. Such devices can be directly paired with cellphones
running different operating systems without installation. Transmitting EEG through a voice band will be achieved with a
frequency modulation circuit, and the EEG signals will be recovered from the voice file by a software demodulation
program.
Large scale measurement of sleep disruption depends on cost-effective solutions. Our project will not only
contribute to the early detection/early intervention of AD pathology, but also serve as a research tool for researchers to
collect large amounts of data to define early biomarkers of AD specific phenotypes.
项目摘要/摘要
睡眠破坏会影响25-40%的阿尔茨海默氏病(AD)轻度至中度痴呆症患者。
与阻塞性睡眠呼吸暂停不同的睡眠结构中断是一种与早期相关的生物标志物
AD和APOE E4等位基因风险因素的阶段。测量身体运动的睡眠传感器无法检测到
周期性的模式在非比型眼运动(NREM)和快速眼动(REM)睡眠阶段之间移动。
对睡眠体系结构的准确监控需要脑电图(EEG)记录。基于家庭的脑电图传感器
远非理想,因为它们每天都不舒服,而且不舒服。仍然需要大量努力
朝着改善电子,无线信号传输和整体成本效益。低成本和
易于使用是公众接受数百万用户的大规模测量所必需的重要因素。
该提案的目标是开发一种优化的,具有成本效益的脑电图传感器,以供家庭使用。
我们提出了一种综合方法,以结合新型电子,以实现成本效益和可靠性,
放大器,蓝牙变速箱和单个软头带上的电池。
SA1。优化的EEG电极可靠记录。电极设计是高的最关键元素
信号质量和友好的用户体验。我们将测试受gecko启发的许多新型自粘电极
脚和蚱hopper腿。这些新颖的表面可能会带来大的侧向握力,以稳定皮肤上的电极,
这可能会大大减少由皮肤和电极之间的相对运动引起的伪影。
SA2。平台独立的无线传输和数据存储。我们建议独立于平台
蓝牙无线信号传输到现有手机。由于手机被广泛用于较旧的和中间
老年人口,在用户自己的手机上记录和存储脑电图数据是大规模的成本效益的解决方案
使用。我们将在每个手机中使用常规语音录制应用程序进行数据存储,并使用蓝牙麦克风
将数据从头带传输到用户的手机。这样的设备可以直接与手机配对
在没有安装的情况下运行不同的操作系统。通过一个通过语音乐队传输脑电图将通过
频率调制电路和EEG信号将通过软件解调从语音文件中恢复
程序。
睡眠中断的大规模测量取决于具有成本效益的解决方案。我们的项目不仅会
为AD病理学的早期检测/早期干预做出贡献,但也是研究人员的研究工具
收集大量数据以定义AD特定表型的早期生物标志物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian-Young Wu其他文献
Jian-Young Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian-Young Wu', 18)}}的其他基金
Cost effective Electroencephalography sensor for monitoring sleep disruption in early stages of Alzheimer's disease
具有成本效益的脑电图传感器,用于监测阿尔茨海默病早期阶段的睡眠中断
- 批准号:
10478859 - 财政年份:2021
- 资助金额:
$ 23.4万 - 项目类别:
Spiral dynamics in the cortex during seizure and sensory evoked activity
癫痫发作和感觉诱发活动期间皮质的螺旋动力学
- 批准号:
7373379 - 财政年份:2008
- 资助金额:
$ 23.4万 - 项目类别:
Spiral dynamics in the cortex during seizure and sensory evoked activity
癫痫发作和感觉诱发活动期间皮质的螺旋动力学
- 批准号:
8018046 - 财政年份:2008
- 资助金额:
$ 23.4万 - 项目类别:
Spiral dynamics in the cortex during seizure and sensory evoked activity
癫痫发作和感觉诱发活动期间皮质的螺旋动力学
- 批准号:
7564060 - 财政年份:2008
- 资助金额:
$ 23.4万 - 项目类别:
Spiral dynamics in the cortex during seizure and sensory evoked activity
癫痫发作和感觉诱发活动期间皮质的螺旋动力学
- 批准号:
7752539 - 财政年份:2008
- 资助金额:
$ 23.4万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Reagentless Sensor Technologies For Continuous Monitoring of Heart Failure Biomarkers
用于连续监测心力衰竭生物标志物的无试剂传感器技术
- 批准号:
10636089 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
Remote Kinesiology for Improving Human Health with Auto-locating Compliant Motion Tracking Stickers and Artificial Intelligence
通过自动定位兼容运动跟踪贴纸和人工智能来改善人类健康的远程运动机能学
- 批准号:
10751952 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
PET Imaging of Vaso-Occlussive Crisis in Sickle Cell Disease
镰状细胞病血管闭塞危象的 PET 成像
- 批准号:
10590698 - 财政年份:2022
- 资助金额:
$ 23.4万 - 项目类别:
Translational regulation of tissue resident macrophages by GCN2
GCN2 对组织驻留巨噬细胞的翻译调节
- 批准号:
10417760 - 财政年份:2022
- 资助金额:
$ 23.4万 - 项目类别: