Characterization of a complex regulatory element of Spinal Muscular Atrophy genes

脊髓性肌萎缩症基因复杂调控元件的表征

基本信息

  • 批准号:
    8721561
  • 负责人:
  • 金额:
    $ 32.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-06 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Humans have two nearly identical copies of Survival Motor Neuron (SMN) gene, SMN1 and SMN2. Low SMN levels due to deletion and/or mutation of SMN1 lead to spinal muscular atrophy (SMA), a major genetic cause of infant mortality. SMN2 fails to compensate for the loss of SMN1 due to a C to T mutation at the 6th position (C6U in transcript) in exon 7. C6U weakens the 32-splice site and triggers SMN2 exon 7 skipping, resulting in synthesis of a truncated protein (SMN¿7), which is unstable. It is known that strategies aimed at correction of SMN2 exon 7 splicing hold the promise for a cure. This proposal emanates from our recent discovery of a unique RNA structure formed by a long-distance interaction (LDI) as a regulator of SMN2 exon 7 splicing (Singh et al., Nucleic Acids Res., 2013, doi:10.1093/nar/gkt609). We call this structure internal stem through LDI-1 (ISTL1). Employing the SHAPE (Selective 22-Hydroxyl Acylation analyzed by Primer Extension) method, we confirmed the formation and functional significance of ISTL1. We showed that an antisense oligonucleotide (ASO)-mediated sequestration of the 32 strand of ISTL1 fully corrects SMN2 exon 7 splicing and restores high levels of SMN and Gemin2, an SMN-interacting protein, in SMA patient cells. Our results also revealed that the 32 strand of ISTL1 is located within a large inhibitory region that we termed intronic splicing silencer N2 (ISS-N2). To continue with our lead, here we propose to characterize additional (novel) intronic cis-elements and their cognate transacting factors in regulation of SMN2 exon 7 splicing. A part of the proposal is aimed at validating the therapeutic efficacy of ISS-N2- targeting ASOs. In Aim 1, we will use overlapping deletions, ASO-based strategies and SHAPE analyses to determine the significance of novel cis-elements within SMN2 intron 7. We will validate our findings in different cell types including motor neuron-like NSC34 cells. We will examine the effect of a larger structural context on the accessibility of the splice sites of SMN2 exon 7. We will determine whether SMN2-specific mutations lead to a structural difference between SMN1 and SMN2 pre-mRNAs, particularly at the splice sites of SMN exon 7. In addition, we will evaluate whether critical cis-elements within intron 6 affect the structural context of intron 7 and potentially lead to the remodeling of the 52 slice site of exon 7. In Aim 2, we will employ over-expression and siRNA-based strategies to identify splicing factors that assist ISTL1 formation and/or use ISTL1 as a site for self-recruitment. We will use a biotinylated oligonucleotide as a trapping device to capture novel RNA-protein complexes that are deposited on SMN2 intron 7 and are critical for the inhibitory effect of LDI. We have previously shown that TIA1 stimulates SMN2 exon 7 splicing by binding to intron 7. We also demonstrated critical role of the Q-rich domain of TIA1 in regulation of SMN2 exon 7 splicing. Recently, a point mutation within Q-rich domain of TIA1 has been shown to cause Welander distal myopathy as well as promote SMN2 exon 7 skipping. Based on these findings and our preliminary results, we will examine the role of another Q-rich domain containing splicing regulator, SFPQ, in SMN2 exon 7 splicing. We will employ UV-crosslinking, footprinting, in vitro binding and SHAPE-based approaches to characterize RNA-protein interactions. In Aim 3, we will perform in vivo studies in a mild as well as in a severe mouse model of SMA to determine the therapeutic efficacy of an ISS-N2 targeting lead phosphorodiamidate morpholino oligomer (PMO). We will design our experimental plan based on several successful in vivo studies reported recently and will employ rigorous criteria of sample-size estimation, randomization and blinding. A successful outcome will lead to the development of a novel ASO-based therapy for SMA.
描述(由申请人提供):人类有几乎两个相同的运动神经元生存基因(SMN1 和 SMN2),由于 SMN1 的缺失和/或突变导致 SMN 水平低,导致脊髓性肌萎缩症(SMA),这是一种主要的遗传病。 SMN2 无法补偿由于外显子 7 中第 6 位(转录物中的 C6U)C 至 T 突变而造成的 SMN1 损失。削弱 32 剪接位点并触发 SMN2 外显子 7 跳跃,导致合成截短的蛋白质 (SMN¿7),该蛋白质不稳定。众所周知,旨在纠正 SMN2 外显子 7 剪接的策略有望治愈。这一提议源自我们最近发现的一种独特的 RNA 结构,该结构由长距离相互作用 (LDI) 形成,作为 SMN2 外显子 7 剪接的调节因子(Singh 等人) al., Nucleic Acids Res., 2013, doi:10.1093/nar/gkt609),我们通过 LDI-1 (ISTL1) 方法将此结构称为内部茎。证实了 ISTL1 的形成和功能意义,我们发现反义寡核苷酸 (ASO) 介导的隔离作用。 ISTL1 的 32 链完全纠正了 SMA 患者细胞中 SMN2 外显子 7 的剪接,并恢复了高水平的 SMN 和 SMN 相互作用蛋白 Gemin2。我们的结果还表明,ISTL1 的 32 链位于一个大的区域内。 我们称之为内含子剪接沉默子 N2 (ISS-N2) 的抑制区域 为了继续我们的研究,我们建议表征 SMN2 外显子 7 剪接调节中的其他(新颖)内含子顺式元件及其同源反式作用因子。该提案旨在验证 ISS-N2 靶向 ASO 的治疗效果。在目标 1 中,我们将使用重叠删除、基于 ASO 的策略和方法。 SHAPE 分析以确定 SMN2 内含子 7 内新顺式元件的重要性。我们将在不同细胞类型中验证我们的发现,包括 我们将检查更大的结构背景对 SMN2 外显子 7 剪接位点可及性的影响。我们将确定 SMN2 特异性突变是否导致 SMN1 和 SMN2 前 mRNA 之间的结构差异,特别是在 SMN 外显子 7 的剪接位点。此外,我们将评估是否存在关键的顺式元件 内含子 6 影响内含子 7 的结构背景,并可能导致 52 的重塑 外显子 7 的切片位点。在目标 2 中,我们将采用过表达和基于 siRNA 的策略来识别有助于 ISTL1 形成的剪接因子和/或使用 ISTL1 作为自我招募位点。捕获装置捕获沉积在 SMN2 内含子 7 上的新型 RNA-蛋白质复合物,对于 LDI 的抑制作用至关重要。通过与内含子 7 结合来调节外显子 7 剪接。我们还证明了 TIA1 的 Q 丰富结构域在调节 SMN2 外显子 7 剪接中的关键作用。最近,TIA1 的 Q 丰富结构域内的点突变已被证明会导致 Welander 远端肌病。以及促进 SMN2 外显子 7 跳跃 基于这些发现和我们的初步结果,我们将研究另一个包含剪接调节因子的富含 Q 的结构域 SFPQ 在 SMN2 中的作用。我们将采用 UV 交联、足迹、体外结合和基于 SHAPE 的方法来表征 RNA-蛋白质相互作用。在目标 3 中,我们将在轻度和重度小鼠模型中进行体内研究。 SMA 以确定 ISS-N2 靶向磷酸二酰胺吗啉低聚物 (PMO) 的治疗效果 我们将根据最近报道的几项成功的体内研究设计我们的实验计划,并将采用严格的样本量标准。估计、随机化和盲法的成功结果将导致基于 ASO 的新型 SMA 疗法的开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RAVINDRA N SINGH其他文献

RAVINDRA N SINGH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RAVINDRA N SINGH', 18)}}的其他基金

High-affinity RNA targets of Survival Motor Neuron Protein
运动神经元存活蛋白的高亲和力 RNA 靶标
  • 批准号:
    8464393
  • 财政年份:
    2012
  • 资助金额:
    $ 32.81万
  • 项目类别:
High-affinity RNA targets of Survival Motor Neuron Protein
运动神经元存活蛋白的高亲和力 RNA 靶标
  • 批准号:
    8532065
  • 财政年份:
    2012
  • 资助金额:
    $ 32.81万
  • 项目类别:
Small Oligonucleotides As Therapeutic Agents Of Spinal Muscular Atrophy
小寡核苷酸作为脊髓性肌萎缩症的治疗剂
  • 批准号:
    8198943
  • 财政年份:
    2011
  • 资助金额:
    $ 32.81万
  • 项目类别:
Small Oligonucleotides As Therapeutic Agents Of Spinal Muscular Atrophy
小寡核苷酸作为脊髓性肌萎缩症的治疗剂
  • 批准号:
    8296504
  • 财政年份:
    2011
  • 资助金额:
    $ 32.81万
  • 项目类别:
Characterization of a complex regulatory element of Spinal Muscular Atrophy genes
脊髓性肌萎缩症基因复杂调控元件的表征
  • 批准号:
    7257827
  • 财政年份:
    2006
  • 资助金额:
    $ 32.81万
  • 项目类别:
Splicing regulation of spinal muscular atrophy genes
脊髓性肌萎缩症基因的剪接调控
  • 批准号:
    9922992
  • 财政年份:
    2006
  • 资助金额:
    $ 32.81万
  • 项目类别:
Characterization of a complex regulatory element of Spinal Muscular Atrophy genes
脊髓性肌萎缩症基因复杂调控元件的表征
  • 批准号:
    8274671
  • 财政年份:
    2006
  • 资助金额:
    $ 32.81万
  • 项目类别:
Splicing Regulation of Spinal Muscular Atrophy Genes
脊髓性肌萎缩症基因的剪接调控
  • 批准号:
    10596591
  • 财政年份:
    2006
  • 资助金额:
    $ 32.81万
  • 项目类别:
Targeting a novel silencer to correct SMN2 splicing in Spinal Muscular Atrophy
靶向新型消音器来纠正脊髓性肌萎缩症中的 SMN2 剪接
  • 批准号:
    7086017
  • 财政年份:
    2006
  • 资助金额:
    $ 32.81万
  • 项目类别:
Characterization of a complex regulatory element of Spinal Muscular Atrophy genes
脊髓性肌萎缩症基因复杂调控元件的表征
  • 批准号:
    7496967
  • 财政年份:
    2006
  • 资助金额:
    $ 32.81万
  • 项目类别:

相似国自然基金

通信协议影响下受限运动建模与估计问题研究
  • 批准号:
    62173068
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
时空视角下的对赌协议与企业并购:绩效、风险及影响机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
抱团取暖:中小股东签订一致行动人协议的动因与影响研究
  • 批准号:
    72002086
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
调度协议影响下的单主多从遥操作系统建模与控制
  • 批准号:
    61903030
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
企业人才引进背景下个别协议的影响与作用机制研究:旁观者同事视角
  • 批准号:
    71802074
  • 批准年份:
    2018
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 32.81万
  • 项目类别:
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
  • 批准号:
    10751263
  • 财政年份:
    2024
  • 资助金额:
    $ 32.81万
  • 项目类别:
UNderstanding the Delivery of Low-Value CAre To CHildren and the Barriers to De-Implementation (UN-LATCH)
了解向儿童提供低价值护理以及取消实施的障碍 (UN-LATCH)
  • 批准号:
    10649811
  • 财政年份:
    2023
  • 资助金额:
    $ 32.81万
  • 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
  • 批准号:
    10648495
  • 财政年份:
    2023
  • 资助金额:
    $ 32.81万
  • 项目类别:
Environmental Exposures & Sleep in the Nurses' Health Study 3
环境暴露
  • 批准号:
    10677271
  • 财政年份:
    2023
  • 资助金额:
    $ 32.81万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了