Capturing the phenotypic landscape of single-nucleotide variation via systematic genome editing
通过系统基因组编辑捕获单核苷酸变异的表型景观
基本信息
- 批准号:9978073
- 负责人:
- 金额:$ 62.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-18 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:Bar CodesBiologicalBiological AssayCellsClustered Regularly Interspaced Short Palindromic RepeatsCodeCollectionCommunitiesComplexDNADataData SetDependenceDetectionDevelopmentDiseaseDisease susceptibilityEngineeringEnvironmentEnvironmental ExposureEvolutionExposure toFoundationsGenesGeneticGenetic EngineeringGenetic VariationGenetic studyGenomeGenomicsGrowthGuide RNAHaplotypesHumanIndividualInvestigationLibrariesMapsMeasuresMedicalMetabolicModelingNucleotidesOrganismOutcomePathway interactionsPharmaceutical PreparationsPharmacotherapyPhenotypePost-Translational Protein ProcessingQuantitative GeneticsQuantitative Trait LociRNA SequencesResearch PersonnelResourcesRoleSaccharomycesSaccharomyces cerevisiaeSingle Nucleotide PolymorphismStressTechnologyTestingTherapeuticTissuesUntranslated RNAVariantVisualizationWorkYeastsbasecausal variantcell typecombinatorialconditioningcost effectivedeletion librarydesigndisease phenotypedisorder riskexperienceexperimental studyfitnessfunctional genomicsgenetic analysisgenetic architecturegenetic resourcegenetic variantgenome databasegenome editinggenome wide association studygenome-widehigh throughput technologyhuman diseaseindexinginsightinternal controlloss of functionmutantprecision medicinerecombinaserepositoryscreeningstudy populationtrait
项目摘要
PROJECT SUMMARY
A major challenge common to understanding phenotypic diversity, modeling selection in evolution, and
developing precision medicine is enhancing our currently limited ability to predict disease and phenotypic
outcomes based on genome sequence and environmental exposures. A comprehensive understanding of
genetic variation and its role in conditioning phenotypes requires systematic, perturbation-based testing of
genetic variants across the genome in multiple environments and in an isogenic background. Previous
systematic genome perturbation efforts have focused primarily on engineering loss-of-function, but naturally
occurring variants have the most relevance to understanding medically relevant phenotypes like human traits
and disease. Such variants have been studied via genome-wide association studies (GWAS) and quantitative
trait locus (QTL) analysis, but these approaches are limited to the haplotypes that appear in the study
population, and only in few cases have the actual causative variants been identified. Advances in genome
editing technologies have made engineering specific genetic variants feasible at a large scale. This proposal
aims to systematically engineer and functionally profile a genome-wide `variation collection' in three
genetically distinct strains that cover all natural single-nucleotide variants (SNVs) in the
Saccharomyces cerevisiae species as well as SNVs associated with human diseases. The collection will
be constructed by a high-throughput CRISPR approach, leveraging an in-house sequence parsing technology
(Recombinase Directed Indexing, or REDI) that will allow rapid, inexpensive isolation of sequence-verified
variant strains among the millions that will be generated. Because some variants only exert their effects in
certain environments, this strain collection will be profiled in hundreds of conditions, including exposure to
various stresses and drugs. DNA barcodes integrated into the genome of each strain will enable pooled,
competitive growth, and allow the comprehensive identification of variants in a genome that modulate fitness
in a given condition in a single experiment. Finally, to dissect the genetic architecture of pathways underlying
diseases and identify key interactions, strains carrying combinations of SNVs will be analyzed. The strain
collection will be made available to the community for further phenotypic investigations. In addition to the
gene x environment (GxE) dataset that will likely be the largest produced to date, the technological, analytical,
and visualization pipelines will be publicly shared and integrated into community resources. This work will
constitute an unprecedented investigation of the consequences of genetic variation and their dependence
upon environment, while providing valuable resources for the scientific community. It will lay technological
and conceptual groundwork for systematic perturbation-based studies of genetic variation in human cells that
will inform the prediction of disease risk and the design of therapeutic strategies based on genome sequence.
项目概要
理解表型多样性、进化中的建模选择以及
发展精准医学正在增强我们目前有限的预测疾病和表型的能力
基于基因组序列和环境暴露的结果。全面了解
遗传变异及其在调节表型中的作用需要系统的、基于扰动的测试
在多种环境和同基因背景下跨基因组的遗传变异。以前的
系统的基因组扰动工作主要集中在工程功能丧失上,但自然
发生的变异与理解医学相关表型(如人类特征)最相关
和疾病。此类变异已通过全基因组关联研究(GWAS)和定量研究进行了研究
性状位点(QTL)分析,但这些方法仅限于研究中出现的单倍型
人群中,只有在少数情况下才确定了实际的致病变异。基因组的进展
编辑技术使得大规模改造特定的遗传变异变得可行。这个提议
旨在系统地设计和功能分析三个基因组范围的“变异集合”
遗传上不同的菌株,涵盖了所有天然单核苷酸变异(SNV)
酿酒酵母物种以及与人类疾病相关的 SNV。该系列将
通过高通量 CRISPR 方法构建,利用内部序列解析技术
(重组酶定向索引,或 REDI)将允许快速、廉价地分离经过序列验证的
将产生数以百万计的变异菌株。因为某些变体仅在以下情况下发挥作用
在某些环境下,该菌株集合将在数百种条件下进行分析,包括暴露于
各种压力和药物。整合到每个菌株基因组中的 DNA 条形码将能够汇集、
竞争性生长,并允许全面识别基因组中调节适应性的变异
在单个实验的给定条件下。最后,剖析潜在途径的遗传结构
疾病并确定关键的相互作用,携带 SNV 组合的菌株将被分析。应变
收集品将提供给社区进行进一步的表型研究。除了
基因 x 环境 (GxE) 数据集可能是迄今为止最大的数据集,技术、分析、
可视化管道将公开共享并集成到社区资源中。这项工作将
对遗传变异的后果及其依赖性进行了前所未有的调查
环境,同时为科学界提供宝贵的资源。它将奠定技术
以及基于扰动的系统性人类细胞遗传变异研究的概念基础
将为疾病风险的预测和基于基因组序列的治疗策略的设计提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lars M Steinmetz其他文献
Lars M Steinmetz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lars M Steinmetz', 18)}}的其他基金
EDGE CMT: Dissecting complex traits in wild isolates of yeast by high-throughput genome editing
EDGE CMT:通过高通量基因组编辑剖析野生酵母分离物的复杂性状
- 批准号:
10559617 - 财政年份:2022
- 资助金额:
$ 62.75万 - 项目类别:
EDGE CMT: Dissecting complex traits in wild isolates of yeast by high-throughput genome editing
EDGE CMT:通过高通量基因组编辑剖析野生酵母分离物的复杂性状
- 批准号:
10452781 - 财政年份:2022
- 资助金额:
$ 62.75万 - 项目类别:
Function-based exploration of genetic variation at genome-scale
基于功能的基因组规模遗传变异探索
- 批准号:
10367604 - 财政年份:2022
- 资助金额:
$ 62.75万 - 项目类别:
Function-based exploration of genetic variation at genome-scale
基于功能的基因组规模遗传变异探索
- 批准号:
10701670 - 财政年份:2022
- 资助金额:
$ 62.75万 - 项目类别:
Capturing the phenotypic landscape of single-nucleotide variation via systematic genome editing
通过系统基因组编辑捕获单核苷酸变异的表型景观
- 批准号:
10390038 - 财政年份:2017
- 资助金额:
$ 62.75万 - 项目类别:
Capturing the phenotypic landscape of single-nucleotide variation via systematic genome editing
通过系统基因组编辑捕获单核苷酸变异的表型景观
- 批准号:
10218202 - 财政年份:2017
- 资助金额:
$ 62.75万 - 项目类别:
Mitochondrial to nuclear gene transfer via synthetic evolution
通过合成进化从线粒体到核基因转移
- 批准号:
8837172 - 财政年份:2015
- 资助金额:
$ 62.75万 - 项目类别:
Mitochondrial to nuclear gene transfer via synthetic evolution
通过合成进化从线粒体到核基因转移
- 批准号:
9269097 - 财政年份:2015
- 资助金额:
$ 62.75万 - 项目类别:
相似国自然基金
基于生物条形码和G-四联体核酶的副溶血性弧菌可视化检测技术研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超灵敏同步检测多种真菌毒素的生物条形码免疫分析技术研究
- 批准号:31701687
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于焦磷酸测序的农药多残留生物条形码免疫分析方法研究
- 批准号:31671938
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
生物条形码金磁纳米双信号放大检测肿瘤Endoglin传感器研究
- 批准号:81502585
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
生物条形码标记纳米探针体内检测肿瘤酶的研究
- 批准号:21572153
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Characterizing Pareto fronts: Trade-offs in the yeast growth cycle constrain adaptation
表征帕累托前沿:酵母生长周期的权衡限制了适应
- 批准号:
10749856 - 财政年份:2024
- 资助金额:
$ 62.75万 - 项目类别:
Human brain multi-omics to decipher major depression pathophysiology
人脑多组学破译重度抑郁症病理生理学
- 批准号:
10715962 - 财政年份:2023
- 资助金额:
$ 62.75万 - 项目类别:
Vesicle Epitope Transcript sequencing (VET-seq): Droplet-based Multiomic Profiling Platform for Single Vesicle Analysis
囊泡表位转录本测序 (VET-seq):用于单囊泡分析的基于液滴的多组学分析平台
- 批准号:
10613257 - 财政年份:2023
- 资助金额:
$ 62.75万 - 项目类别: