Capturing the phenotypic landscape of single-nucleotide variation via systematic genome editing
通过系统基因组编辑捕获单核苷酸变异的表型景观
基本信息
- 批准号:10390038
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-18 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:Bar CodesCellsClustered Regularly Interspaced Short Palindromic RepeatsCollectionCommunitiesDNAData SetDependenceDiseaseDisease susceptibilityEngineeringEnvironmentEnvironmental ExposureEvolutionExposure toGenesGenetic VariationGenetic studyGenomeGrowthHaplotypesHumanIndividualInvestigationMeasuresMedicalModelingNucleotidesOutcomePathway interactionsPharmaceutical PreparationsPhenotypeQuantitative Trait LociResearch PersonnelResourcesRoleSaccharomyces cerevisiaeSingle Nucleotide PolymorphismStressTechnologyTestingTherapeuticTissuesVariantVisualizationWorkbasecausal variantcell typeconditioningdesigndisease phenotypedisorder riskexperimental studyfitnessgenetic architecturegenetic variantgenome editinggenome wide association studygenome-widehuman diseaseindexingloss of functionprecision medicinerecombinasestudy populationtrait
项目摘要
PROJECT SUMMARY
A major challenge common to understanding phenotypic diversity, modeling selection in evolution, and
developing precision medicine is enhancing our currently limited ability to predict disease and phenotypic
outcomes based on genome sequence and environmental exposures. A comprehensive understanding of
genetic variation and its role in conditioning phenotypes requires systematic, perturbation-based testing of
genetic variants across the genome in multiple environments and in an isogenic background. Previous
systematic genome perturbation efforts have focused primarily on engineering loss-of-function, but naturally
occurring variants have the most relevance to understanding medically relevant phenotypes like human traits
and disease. Such variants have been studied via genome-wide association studies (GWAS) and quantitative
trait locus (QTL) analysis, but these approaches are limited to the haplotypes that appear in the study
population, and only in few cases have the actual causative variants been identified. Advances in genome
editing technologies have made engineering specific genetic variants feasible at a large scale. This proposal
aims to systematically engineer and functionally profile a genome-wide `variation collection' in three
genetically distinct strains that cover all natural single-nucleotide variants (SNVs) in the Saccharomyces
cerevisiae species as well as SNVs associated with human diseases. The collection will be constructed by
a high-throughput CRISPR approach, leveraging an in-house sequence parsing technology (Recombinase
Directed Indexing, or REDI) that will allow rapid, inexpensive isolation of sequence-verified variant strains
among the millions that will be generated. Because some variants only exert their effects in certain
environments, this strain collection will be profiled in hundreds of conditions, including exposure to various
stresses and drugs. DNA barcodes integrated into the genome of each strain will enable pooled, competitive
growth, and allow the comprehensive identification of variants in a genome that modulate fitness in a given
condition in a single experiment. Finally, to dissect the genetic architecture of pathways underlying diseases
and identify key interactions, strains carrying combinations of SNVs will be analyzed. The strain collection will
be made available to the community for further phenotypic investigations. In addition to the gene x environment
(GxE) dataset that will likely be the largest produced to date, the technological, analytical, and visualization
pipelines will be publicly shared and integrated into community resources. This work will constitute an
unprecedented investigation of the consequences of genetic variation and their dependence upon
environment, while providing valuable resources for the scientific community. It will lay technological and
conceptual groundwork for systematic perturbation-based studies of genetic variation in human cells that will
inform the prediction of disease risk and the design of therapeutic strategies based on genome sequence.
项目概要
理解表型多样性、进化中的建模选择以及
发展精准医学正在增强我们目前有限的预测疾病和表型的能力
基于基因组序列和环境暴露的结果。全面了解
遗传变异及其在调节表型中的作用需要系统的、基于扰动的测试
在多种环境和同基因背景下跨基因组的遗传变异。以前的
系统的基因组扰动工作主要集中在工程功能丧失上,但自然
发生的变异与理解医学相关表型(如人类特征)最相关
和疾病。此类变异已通过全基因组关联研究(GWAS)和定量研究进行了研究
性状位点(QTL)分析,但这些方法仅限于研究中出现的单倍型
人群中,只有在少数情况下才确定了实际的致病变异。基因组的进展
编辑技术使得大规模改造特定的遗传变异变得可行。这个提议
旨在系统地设计和功能分析三个基因组范围的“变异集合”
遗传上不同的菌株,涵盖了酵母菌中所有天然的单核苷酸变体 (SNV)
酿酒酵母物种以及与人类疾病相关的 SNV。该集合将由
高通量 CRISPR 方法,利用内部序列解析技术(重组酶
定向索引(REDI)将允许快速、廉价地分离经过序列验证的变异菌株
其中将产生数以百万计的资金。因为某些变体仅在某些特定情况下发挥作用
环境中,该菌株集合将在数百种条件下进行分析,包括暴露于各种环境
压力和药物。整合到每个菌株基因组中的 DNA 条形码将实现汇集、竞争
生长,并允许全面识别基因组中调节给定适应度的变异
单个实验中的条件。最后,剖析潜在疾病途径的遗传结构
并确定关键的相互作用,对携带 SNV 组合的菌株进行分析。菌株收集将
提供给社区进行进一步的表型研究。除了基因x环境
(GxE) 数据集可能是迄今为止最大的技术、分析和可视化数据集
管道将公开共享并整合到社区资源中。这项工作将构成一个
对遗传变异的后果及其依赖性的前所未有的调查
环境,同时为科学界提供宝贵的资源。它将奠定技术和
人类细胞遗传变异的基于扰动的系统研究的概念基础
为疾病风险的预测和基于基因组序列的治疗策略的设计提供信息。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thioesterase-Catalyzed Aminoacylation and Thiolation of Polyketides in Fungi.
- DOI:10.1021/jacs.9b01083
- 发表时间:2019-05
- 期刊:
- 影响因子:15
- 作者:Mancheng Tang;Curt R. Fischer;Jason V. Chari;D. Tan;Sundari Suresh;A. Chu;Molly Miranda;Justin Smith;Zhuan Zhang;N. Garg;Robert P. St. Onge;Yi Tang
- 通讯作者:Mancheng Tang;Curt R. Fischer;Jason V. Chari;D. Tan;Sundari Suresh;A. Chu;Molly Miranda;Justin Smith;Zhuan Zhang;N. Garg;Robert P. St. Onge;Yi Tang
Dissecting quantitative trait nucleotides by saturation genome editing.
通过饱和基因组编辑来剖析数量性状核苷酸。
- DOI:10.1101/2024.02.02.577784
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Roy,KevinR;Smith,JustinD;Li,Shengdi;Vonesch,SibylleC;Nguyen,Michelle;Burnett,WallaceT;Orsley,KevinM;Lee,Cheng-Sheng;Haber,JamesE;StOnge,RobertP;Steinmetz,LarsM
- 通讯作者:Steinmetz,LarsM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lars M Steinmetz其他文献
Lars M Steinmetz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lars M Steinmetz', 18)}}的其他基金
EDGE CMT: Dissecting complex traits in wild isolates of yeast by high-throughput genome editing
EDGE CMT:通过高通量基因组编辑剖析野生酵母分离物的复杂性状
- 批准号:
10559617 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
EDGE CMT: Dissecting complex traits in wild isolates of yeast by high-throughput genome editing
EDGE CMT:通过高通量基因组编辑剖析野生酵母分离物的复杂性状
- 批准号:
10452781 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Function-based exploration of genetic variation at genome-scale
基于功能的基因组规模遗传变异探索
- 批准号:
10367604 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Function-based exploration of genetic variation at genome-scale
基于功能的基因组规模遗传变异探索
- 批准号:
10701670 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Capturing the phenotypic landscape of single-nucleotide variation via systematic genome editing
通过系统基因组编辑捕获单核苷酸变异的表型景观
- 批准号:
9978073 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Capturing the phenotypic landscape of single-nucleotide variation via systematic genome editing
通过系统基因组编辑捕获单核苷酸变异的表型景观
- 批准号:
10218202 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Mitochondrial to nuclear gene transfer via synthetic evolution
通过合成进化从线粒体到核基因转移
- 批准号:
8837172 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Mitochondrial to nuclear gene transfer via synthetic evolution
通过合成进化从线粒体到核基因转移
- 批准号:
9269097 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
相似国自然基金
FAM134B介导内质网自噬对脓毒症状态下树突状细胞铁死亡的调节作用及信号机制
- 批准号:82302412
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单细胞分辨率下的石杉碱甲介导小胶质细胞极化表型抗缺血性脑卒中的机制研究
- 批准号:82304883
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Upd2调控气管干细胞迁移的分子机制研究
- 批准号:32300699
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Next generation massively multiplexed combinatorial genetic screens
下一代大规模多重组合遗传筛选
- 批准号:
10587354 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
High resolution lineage tracing of developmental hematopoiesis
发育造血的高分辨率谱系追踪
- 批准号:
10585400 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Tumor-barcoding coupled with high-throughput sequencing for quantitative radiogenomics of the abscopal response in NSCLC
肿瘤条形码与高通量测序相结合,用于 NSCLC 远隔反应的定量放射基因组学
- 批准号:
10601182 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
A Uniquely Scalable Approach to Sequence Tens of Millions of Single Cells Without Compromising Performance
一种独特的可扩展方法,可在不影响性能的情况下对数千万个单细胞进行测序
- 批准号:
10700398 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别: