Function-based exploration of genetic variation at genome-scale
基于功能的基因组规模遗传变异探索
基本信息
- 批准号:10701670
- 负责人:
- 金额:$ 70.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-09 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAllelesBindingBiological ModelsCRISPR/Cas technologyCell LineCell modelCellsChromatinChromosome 11ChromosomesClinicalClustered Regularly Interspaced Short Palindromic RepeatsCodeComplexComputer ModelsCouplingDNADNA sequencingDNase I hypersensitive sites sequencingDataData SetDiseaseElementsEngineered GeneEngineeringEnhancersFutureGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGenetic VariationGenomeGenomicsHi-CHumanHuman ChromosomesHuman EngineeringIndividualKnowledgeLinkLocationLogicMeasuresMediatingMethodsModelingMolecularNucleic Acid Regulatory SequencesOrganismOutcomePerformancePhenotypePrimary Cell CulturesProcessProteinsReadingRegulator GenesRegulatory ElementRelaxationReportingResolutionTechnologyTestingTimeTissuesTrainingUntranslated RNAVariantbase editingcausal variantcell typeclinically relevantcostdisease phenotypedisorder riskeffective therapyempowermentfunctional genomicsgene regulatory networkgenetic elementgenetic variantgenome editinggenome sequencinggenome wide association studygenome-widegenomic datagenomic toolsimprovedmachine learning modelnovelnovel strategiesprecision medicinepredictive modelingpromoterscreeningtooltraittranscription factortranscriptome sequencingtranscriptomicsvariant of unknown significance
项目摘要
PROJECT SUMMARY
Genome-wide association studies have discovered thousands of genetic variants associated with phenotypic
traits such as disease risk. Most of the associated variation lies within non-coding regions of the genome and
the causative effects of those variants remain largely unknown. The sparsity of knowledge on interactions
between the coding and non-coding regulatory parts of the genome makes the prediction of variant function
solely from genome sequence and location impossible. We propose to experimentally uncover the functional
relevance of genetic variants at a large scale, by perturbing variants and genetic elements containing variants,
and reading out the direct consequences of those perturbations on gene regulation. To this end, we propose to
apply our recently developed CRISPR/Cas9 functional genomics screening technology with targeted single-cell
transcriptomic readouts (targeted Perturb-seq or TAP-Seq in short) to enable systematic interrogation of non-
coding regions and genetic variation therein. First, we will apply our targeted Perturb-seq to decipher the
regulatory circuitry encoded on an entire human chromosome by systematically perturbing all major genetic
elements (enhancers, protein-coding and lncRNA genes). This extensive data set will enable to decipher the
complex regulatory networks controlling gene expression on the selected chromosome. Next, we will uncover
causal regulatory variants in these regions by coupling high-throughput precision genome editing to
simultaneous single-cell genomic and transcriptomic readout. Using this novel approach, we will be able to
decipher the functional impact of genetic variants on gene expression and derive rules by which genetic variation
perturbs gene regulatory processes. We will integrate the generated data with available functional genomics
data, such as transcription factor binding (ChIP-seq), chromatin accessibility (ATAC-seq, DNAse-seq) and
interactions in 3D (Hi-C), in order to train machine learning models to derive rules of the observed regulatory
interactions. These models will be applied to decipher the molecular mechanisms underlying the regulatory logic,
and to predict regulatory interactions and variants throughout the genome and across cell types. Selected
predictions will be experimentally validated using the established perturbation technologies, to verify clinically
relevant predictions and improve the performance of the predictive models. Taken together, this project will
answer fundamental questions in gene regulation, uncover the mechanisms by which genetic variation impacts
gene expression, and create datasets and computational models as valuable tools for interpreting results from
GWAS, eQTL and clinical genomic studies.
项目概要
全基因组关联研究发现了数千种与表型相关的遗传变异
疾病风险等特征。大多数相关变异位于基因组的非编码区域内
这些变异的致病影响在很大程度上仍然未知。交互知识的稀疏性
基因组的编码和非编码调控部分之间的关系可以预测变异功能
仅从基因组序列和位置来看是不可能的。我们建议通过实验揭示功能
通过扰动变异和包含变异的遗传元件,大规模遗传变异的相关性,
并读出这些扰动对基因调控的直接后果。为此,我们建议
应用我们最近开发的针对单细胞的CRISPR/Cas9功能基因组筛选技术
转录组读数(简称为靶向 Perturb-seq 或 TAP-Seq),以实现对非
编码区和其中的遗传变异。首先,我们将应用我们的目标 Perturb-seq 来破译
通过系统地干扰所有主要遗传基因,在整个人类染色体上编码的调节电路
元件(增强子、蛋白质编码和 lncRNA 基因)。这个广泛的数据集将有助于破译
控制所选染色体上基因表达的复杂调控网络。接下来我们就来揭秘
通过将高通量精准基因组编辑与这些区域的因果调控变异相结合
同时读取单细胞基因组和转录组。使用这种新颖的方法,我们将能够
破译遗传变异对基因表达的功能影响,并推导出遗传变异的规则
扰乱基因调控过程。我们将把生成的数据与可用的功能基因组学整合起来
数据,例如转录因子结合 (ChIP-seq)、染色质可及性(ATAC-seq、DNAse-seq)和
3D(Hi-C)交互,以训练机器学习模型来导出观察到的监管规则
互动。这些模型将用于破译调控逻辑背后的分子机制,
并预测整个基因组和跨细胞类型的调控相互作用和变异。已选择
将使用已建立的扰动技术对预测进行实验验证,以进行临床验证
相关预测并提高预测模型的性能。综合起来,该项目将
回答基因调控的基本问题,揭示遗传变异影响的机制
基因表达,并创建数据集和计算模型作为解释结果的有价值的工具
GWAS、eQTL 和临床基因组研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lars M Steinmetz其他文献
Lars M Steinmetz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lars M Steinmetz', 18)}}的其他基金
EDGE CMT: Dissecting complex traits in wild isolates of yeast by high-throughput genome editing
EDGE CMT:通过高通量基因组编辑剖析野生酵母分离物的复杂性状
- 批准号:
10559617 - 财政年份:2022
- 资助金额:
$ 70.82万 - 项目类别:
EDGE CMT: Dissecting complex traits in wild isolates of yeast by high-throughput genome editing
EDGE CMT:通过高通量基因组编辑剖析野生酵母分离物的复杂性状
- 批准号:
10452781 - 财政年份:2022
- 资助金额:
$ 70.82万 - 项目类别:
Function-based exploration of genetic variation at genome-scale
基于功能的基因组规模遗传变异探索
- 批准号:
10367604 - 财政年份:2022
- 资助金额:
$ 70.82万 - 项目类别:
Capturing the phenotypic landscape of single-nucleotide variation via systematic genome editing
通过系统基因组编辑捕获单核苷酸变异的表型景观
- 批准号:
10390038 - 财政年份:2017
- 资助金额:
$ 70.82万 - 项目类别:
Capturing the phenotypic landscape of single-nucleotide variation via systematic genome editing
通过系统基因组编辑捕获单核苷酸变异的表型景观
- 批准号:
9978073 - 财政年份:2017
- 资助金额:
$ 70.82万 - 项目类别:
Capturing the phenotypic landscape of single-nucleotide variation via systematic genome editing
通过系统基因组编辑捕获单核苷酸变异的表型景观
- 批准号:
10218202 - 财政年份:2017
- 资助金额:
$ 70.82万 - 项目类别:
Mitochondrial to nuclear gene transfer via synthetic evolution
通过合成进化从线粒体到核基因转移
- 批准号:
8837172 - 财政年份:2015
- 资助金额:
$ 70.82万 - 项目类别:
Mitochondrial to nuclear gene transfer via synthetic evolution
通过合成进化从线粒体到核基因转移
- 批准号:
9269097 - 财政年份:2015
- 资助金额:
$ 70.82万 - 项目类别:
相似国自然基金
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
人类胎盘合体滋养层形成分子机制及其与子痫前期发生关联的研究
- 批准号:31900602
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 70.82万 - 项目类别:
Population-level and mechanistic dissection of 17q21 structural variant association with psychiatric traits
17q21 结构变异与精神特征关联的群体水平和机制剖析
- 批准号:
10732393 - 财政年份:2023
- 资助金额:
$ 70.82万 - 项目类别:
Uncovering the Genetic Mechanisms of the Chromosome 17q21.31 Tau Haplotype on Neurodegeneration Risk in FTD and PSP
揭示染色体 17q21.31 Tau 单倍型对 FTD 和 PSP 神经变性风险的遗传机制
- 批准号:
10789246 - 财政年份:2023
- 资助金额:
$ 70.82万 - 项目类别:
Mapping heritable chromatin loop variants with allele-specific Hi-C analysis
通过等位基因特异性 Hi-C 分析绘制可遗传的染色质环变体图谱
- 批准号:
10583721 - 财政年份:2023
- 资助金额:
$ 70.82万 - 项目类别: