Predicting Suicidal Behavior in Veterans with Bipolar Disorder using Behavioral and Neuroimaging Based Impulsivity Phenotypes
使用基于行为和神经影像的冲动表型预测患有双相情感障碍的退伍军人的自杀行为
基本信息
- 批准号:9886839
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdultAgeAggressive behaviorAreaBehavioralBehavioral ParadigmBipolar DisorderBrain regionChlorpromazineClinicalClinical assessmentsCognitiveComplementEmotionalExanthemaFiberFunctional Magnetic Resonance ImagingFutureHealthcareImageImpulsive BehaviorImpulsivityIndividualInferior frontal gyrusInterruptionLeftLithiumMachine LearningMajor Depressive DisorderMeasuresMedical RecordsMental HealthMental disordersModelingMoodsMotorNeuritesNeurobiologyNeurocognitiveNeuropsychologyOutcome MeasurePatient Self-ReportPatientsPersonsPhenotypePost-Traumatic Stress DisordersPsychotic DisordersRecording of previous eventsRewardsRiskSchizophreniaSeveritiesSignal TransductionSuicideSuicide attemptTestingVentral StriatumVeteransWorkbaseblood oxygen level dependentcausal modeldensitydiscountingenvironmental changeexperiencefollow-upfrontal lobefunctional disabilitygray mattermortality risknegative affectneural circuitneuroimagingnovelresponsesexsocialsocial cognitionsuicidalsuicidal actsuicidal behaviorsuicidal morbiditysuicide ratetraittrait impulsivitywhite matter
项目摘要
Project Summary
Studies examining the relationship between psychiatric illness and suicide from the Department of Veterans
Affairs indicate that individuals with bipolar disorder have the highest rate of suicide, which is even greater
compared to post-traumatic stress disorder, schizophrenia and major depression. When left untreated, bipolar
disorder has a 5-15% risk of death by suicide, making it a top priority for Veterans' mental health care.
Individuals with bipolar disorder behave impulsively – even during euthymic periods and understanding the
relationship between impulsivity and suicidal behavior in bipolar disorder may assist in the identification of
individuals at greatest risk for a future suicide attempt. Progress in understanding this relationship has been
significantly hampered, however, by the conflation of different measures of impulsivity. Impulsivity can be
measured as a relatively stable trait using self-report measures or as a state measure assessed through the
use of behavioral paradigms sensitive to changing environmental contingencies. Models of state impulsivity
have focused on (1) “rapid-response inhibition” involving difficulty inhibiting responses that are prepotent in the
context of changing environmental situations and (2) “choice impulsivity” defined as the inability to delay
gratification for a larger reward. These models correlate weakly, but strongly overlap with brain regions
implicated in the neurobiology of bipolar disorder. We propose investigating measures of state and trait
impulsivity in 40 euthymic Veterans with bipolar disorder (BD) and a suicide attempt history (BD+S), 40
euthymic Veterans with bipolar disorder and no suicide attempt history (BD-S) and 40 healthy controls (HC).
The primary suicide outcome measure in this study will be suicide attempts assessed using the Columbia
Suicide Severity Rating Scale and medical record review. This will be complemented through the use of a
broader composite suicide outcome measure based on the occurrence of any of 5 types of suicidal behavior
including: (1) death by suicide; (2) suicide attempt; (3) interrupted suicide attempt; (4) aborted suicide attempt;
or (5) preparatory suicidal acts. Following comprehensive baseline clinical, neuropsychological and
neuroimaging assessments all Veterans will subsequently complete 6- and 12-month in-person follow-up
clinical assessments of mood and suicidal behavior. Novel measures of trait impulsivity in this study will include
urgency and impulsive/premeditated aggression. We will assess the relationship between impulsive aggression
and social cognition, functional disability and neurocognitive functioning in BD+S. We will further investigate
two neural circuits tapping state measures of rapid response inhibition (using a go/no-go task) and choice
impulsivity (using a delay discounting task), respectively, using functional magnetic resonance imaging and
neurite orientation dispersion and density imaging, which will provide novel measures of fiber arrangement and
neurite density in tracts connecting gray matter regions. Dynamic causal modeling will be used to empirically
test causal models regarding the interaction of brain regions comprising these two circuits respectively.
Machine learning will be used to integrate baseline trait and state measures of impulsivity to longitudinally
predict suicidal behavior over one year. The specific aims of this study are: (1) to investigate the relationship
between trait measures of impulsivity and suicide attempt history in Veterans with bipolar disorder; (2) to
investigate the neural circuitry underlying two models of state impulsivity and their relationship to suicide
attempt history in Veterans with bipolar disorder; and (3) to identify which combination of impulsivity measures
differentiates BD+S from BD-S and HC at a baseline timepoint and can be used to predict suicidal behavior
longitudinally over 1 year.
项目摘要
研究研究了资深人士的精神病与自杀之间关系的研究
事务表明,患有躁郁症的人的自杀率最高,这甚至更大
与创伤后应激障碍,精神分裂症和严重抑郁症相比。当未治疗时,双极
疾病自杀的死亡风险为5-15%,使其成为退伍军人精神卫生保健的重中之重。
双相情感障碍的人冲动地行为 - 即使在整齐时期
冲动性与双相情感障碍中自杀行为之间的关系可能有助于识别
未来自杀企图的风险最大的人。理解这种关系的进展一直是
然而,由于不同的冲动度度量的融合而显着阻碍了。冲动可以
使用自我报告措施或通过该状态测量作为相对稳定的特征测量
使用对不断变化的环境偶然性敏感的行为范式的使用。国家冲动模式
专注于(1)“快速响应抑制”,涉及困难的抑制反应
改变环境状况的背景和(2)“选择冲动”被定义为无法延迟
满足更大的奖励。这些模型与大脑区域的重叠较弱,但密切相关
在躁郁症的神经生物学中实施。我们提出调查状态和特征的措施
40名具有躁郁症(BD)和自杀企业历史(BD+S)的正式退伍军人的冲动性,40
具有躁郁症和无自杀尝试史(BD-S)和40个健康对照(HC)的福特退伍军人(HC)。
这项研究中的主要自杀结果指标将是使用哥伦比亚的自杀企图
自杀严重性评级量表和病历审查。这将通过使用
基于5种类型的自杀行为中的任何一种,更广泛的综合自杀结果指标
包括:(1)自杀死亡; (2)自杀企图; (3)自杀企图中断; (4)自杀未遂;
或(5)制备自杀行为。遵循全面的基线临床,神经心理学和
神经影像学评估所有退伍军人随后将完成6个月和12个月的亲身随访
情绪和自杀行为的临床评估。在这项研究中,对性状冲动的新颖测量将包括
紧迫性和冲动/有预谋的侵略性。我们将评估冲动激进的关系
BD+s中的社会认知,功能残疾和神经认知功能。我们将进一步调查
两个神经元电路利用快速响应抑制的状态测量(使用GO/No-Go任务)和选择
冲动性(分别使用延迟折现任务),使用功能磁共振成像和
神经取向分散和密度成像,这将提供纤维排列的新颖测量和
连接灰质区域的区域中的神经密度。动态因果建模将用于经验
测试因果模型,分别涉及完成这两个电路的大脑区域的相互作用。
机器学习将用于整合基线特征和冲动性的状态测量
预测一年内的自杀行为。这项研究的具体目的是:(1)调查关系
在患有躁郁症的退伍军人的冲动性和自杀企图历史之间的特质量度之间; (2)至
研究两种状态冲动模型的神经回路及其与自杀的关系
尝试患有躁郁症的退伍军人的历史; (3)确定冲动性措施的组合
在基线时间点将BD+S与BD-S和HC区分开,可用于预测自杀行为
纵向1年。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PHILIP R SZESZKO其他文献
PHILIP R SZESZKO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PHILIP R SZESZKO', 18)}}的其他基金
Predicting Suicidal Behavior in Veterans with Bipolar Disorder using Behavioral and Neuroimaging Based Impulsivity Phenotypes
使用基于行为和神经影像的冲动表型预测患有双相情感障碍的退伍军人的自杀行为
- 批准号:
10425238 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Predicting Suicidal Behavior in Veterans with Bipolar Disorder using Behavioral and Neuroimaging Based Impulsivity Phenotypes
使用基于行为和神经影像的冲动表型预测患有双相情感障碍的退伍军人的自杀行为
- 批准号:
10704555 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Crossing White Matter Fibers as an Endophenotype in First-Episode Psychosis
穿越白质纤维作为首发精神病的内表型
- 批准号:
9169853 - 财政年份:2016
- 资助金额:
-- - 项目类别:
MR Imaging Predictors of Response & Outcome in First Episode Schizophrenia
MR 成像反应预测因子
- 批准号:
8065451 - 财政年份:2010
- 资助金额:
-- - 项目类别:
DIFFUSION TENSOR IMAGING IN FIRST EPISODE SCHIZOPHRENIA
首发精神分裂症的弥散张量成像
- 批准号:
8167222 - 财政年份:2010
- 资助金额:
-- - 项目类别:
MAPPING CORTICAL THICKNESS IN OBSESSIVE-COMPULSIVE DISORDER
绘制强迫症患者的皮质厚度图
- 批准号:
7955799 - 财政年份:2009
- 资助金额:
-- - 项目类别:
NEUROIMAGING STUDIES OF FRONTAL LOBE PATHOLOGY IN OCD
强迫症额叶病理学的神经影像学研究
- 批准号:
7955798 - 财政年份:2009
- 资助金额:
-- - 项目类别:
DIFFUSION TENSOR IMAGING IN FIRST EPISODE SCHIZOPHRENIA
首发精神分裂症的弥散张量成像
- 批准号:
7951916 - 财政年份:2009
- 资助金额:
-- - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Midlife cardiovascular stress physiology and preclinical cerebrovascular disease
中年心血管应激生理学与临床前脑血管疾病
- 批准号:
10720054 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A rigorous test of dual process model predictions for problematic alcohol involvement
对有问题的酒精参与的双过程模型预测的严格测试
- 批准号:
10679252 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Feasibility Trial of a Novel Integrated Mindfulness and Acupuncture Program to Improve Outcomes after Spine Surgery (I-MASS)
旨在改善脊柱手术后效果的新型综合正念和针灸计划的可行性试验(I-MASS)
- 批准号:
10649741 - 财政年份:2023
- 资助金额:
-- - 项目类别: