Statistical Methods for ODE Models in AIDS Research
艾滋病研究中 ODE 模型的统计方法
基本信息
- 批准号:9064752
- 负责人:
- 金额:$ 34.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-01-15 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:AIDS/HIV problemAcquired Immunodeficiency SyndromeAddressAlgorithmsAreaBasic ScienceBiologicalBiomedical ResearchBiomedical TechnologyBloodCD8B1 geneCell LineCommunitiesComplexComputational algorithmComputer SimulationDataData AnalysesDifferential EquationDisease ProgressionEpidemicFoundationsFunding AgencyGene ExpressionGene ProteinsGenomicsHIVHIV InfectionsHIV vaccineHIV-1HealthHighly Active Antiretroviral TherapyImmune systemInfectionInvestmentsLifeMacacaMacaca mulattaMessenger RNAMetabolic PathwayMethodologyMethodsMicroRNAsModelingMolecularMolecular GeneticsNetwork-basedPathogenesisPhenotypeProceduresProteinsProteomicsRegulator GenesResearchResearch PersonnelSIVSignal TransductionSoftware FrameworkSoftware ToolsSource CodeStatistical MethodsSystems BiologyT-LymphocyteTechniquesTherapeuticTimeUnited States National Institutes of HealthVaccinationVaccinesViral Load resultVirusbasebiological systemscostdeep sequencingdesigngenome-widehigh throughput screeninghigh throughput technologyimmunogenicitymathematical modelmetabolomicsnetwork modelsnew technologynonhuman primatenovelpathogenresearch studyresponsetemporal measurementtime usetranscriptome sequencingtranscriptomicsuser friendly softwarevaccine developmentvector vaccine
项目摘要
DESCRIPTION (provided by applicant): Owing to the significant cost reduction of high-throughput technologies, frequent time course genome-wide gene expression data, in addition to time course cellular level and longitudinal phenotype response data, are often collected in recent HIV/AIDS studies and other biomedical projects. However, the effective use of the high-throughput time course data at transcriptomic and proteomics levels to study dynamic responses and network features is often hindered by lacking of statistical methods to reconstruct high-dimensional dynamic models. In this renewal project, we intend to fill this gap and propose the following specific aims: 1) Develop more efficient parameter estimation methods for high-dimensional ordinary differential equation (ODE) models. Aim 1 intends to develop more efficient statistical methods to estimate high-dimensional ODE model parameters to provide a foundation for reconstructing biological networks at gene, protein and molecular levels. 2) Develop novel statistical methods and implementation procedures for high-dimensional ODE variable selection to reconstruct the dynamic networks. We combine new statistical estimation methods for ODE models and regularization-based variable selection techniques to identify ODE network edges. Statistical methodologies and theoretical justifications will be established for the proposed ODE-based network models. 3) Evaluate and validate the methodologies developed in Aims 1-2 using computer simulations and real data analysis from HIV/AIDS studies. It is important to carefully evaluate the high-dimensional ODE variable selection and parameter estimation methods developed in Aims 1-2, and perform comparisons with existing methods for practical use. In particular, it is necessary to apply the proposed methods to experimental data from HIV/AIDS studies in order to demonstrate the usefulness of the proposed methodologies to address scientific questions. 4) Develop and disseminate efficient computational algorithms and user-friendly software tools for the proposed methods to the broader research community. It is very important to develop efficient computing algorithms and share/disseminate the computational source codes to the general research community.
描述(由适用提供):由于高通量技术的大量成本降低,经常在最近的HIV/AIDS研究和其他生物医学项目中收集了时间课程水平和纵向表型响应数据外,经常会收集到时间课程全基因组基因表达数据。但是,在转录组和蛋白质组学水平上有效使用高通量时间过程来研究动态响应和网络特征通常由于缺乏重建高维动态模型的统计方法而受到阻碍。在这个续订项目中,我们打算填补这一空白并提出以下特定目的:1)为高维的普通微分方程(ODE)模型开发更有效的参数估计方法。 AIM 1打算开发更有效的统计方法来估计高维ODE模型参数,以为重建基因,蛋白质和分子水平的生物网络提供基础。 2)开发新的统计方法和实现程序,以重建高维ode变量选择,以重建动态网络。我们结合了ODE模型的新统计估计方法和基于调节的可变选择技术,以识别ODE网络边缘。将为拟议的基于ODE的网络模型建立统计方法和理论理由。 3)使用计算机模拟和艾滋病毒/艾滋病研究中的实际数据分析来评估和验证目标1-2中开发的方法。仔细评估AIMS 1-2中开发的高维ode变量选择和参数估计方法,并与现有方法进行比较,这一点很重要。特别是,有必要将提出的方法应用于来自HIV/AIDS研究的实验数据,以证明提出的方法解决科学问题的有用性。 4)开发和传播有效的计算算法和用户友好的软件工具,以向更广泛的研究社区提出的方法。开发有效的计算算法并将计算源代码共享/传播到一般研究社区非常重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hulin Wu其他文献
Hulin Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hulin Wu', 18)}}的其他基金
Biomathematical Modeling. Biostatistics. and Bioinformatics Core
生物数学建模。
- 批准号:
8462339 - 财政年份:2012
- 资助金额:
$ 34.65万 - 项目类别:
Estimation Methods for Nonlinear ODE Models in AIDS Research
艾滋病研究中非线性 ODE 模型的估计方法
- 批准号:
8207860 - 财政年份:2010
- 资助金额:
$ 34.65万 - 项目类别:
Estimation Methods for Nonlinear ODE Models in AIDS Research
艾滋病研究中非线性 ODE 模型的估计方法
- 批准号:
8414429 - 财政年份:2010
- 资助金额:
$ 34.65万 - 项目类别:
Estimation Methods for Nonlinear ODE Models in AIDS Research
艾滋病研究中非线性 ODE 模型的估计方法
- 批准号:
7839355 - 财政年份:2010
- 资助金额:
$ 34.65万 - 项目类别:
Estimation Methods for Nonlinear ODE Models in AIDS Research
艾滋病研究中非线性 ODE 模型的估计方法
- 批准号:
8012822 - 财政年份:2010
- 资助金额:
$ 34.65万 - 项目类别:
Statistical Methods for ODE Models in AIDS Research
艾滋病研究中 ODE 模型的统计方法
- 批准号:
9268717 - 财政年份:2010
- 资助金额:
$ 34.65万 - 项目类别:
Moodeling Immunity for Biodefense: influenza virus
生物防御的模型免疫:流感病毒
- 批准号:
8159583 - 财政年份:2010
- 资助金额:
$ 34.65万 - 项目类别:
相似海外基金
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - Methods
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686544 - 财政年份:2023
- 资助金额:
$ 34.65万 - 项目类别:
Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN) Scientific Leadership Center
艾滋病毒/艾滋病干预青少年医学试验网络 (ATN) 科学领导中心
- 批准号:
10595899 - 财政年份:2023
- 资助金额:
$ 34.65万 - 项目类别:
Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN)Scientific Leadership Center; ADMIN SUPPLEMENT
艾滋病毒/艾滋病干预青少年医学试验网络 (ATN) 科学领导中心;
- 批准号:
10855435 - 财政年份:2023
- 资助金额:
$ 34.65万 - 项目类别:
Hepatotoxic mechanisms of anti-HIV- and anti-COVID-19 drugs and substance use disorders
抗 HIV 和抗 COVID-19 药物和物质使用障碍的肝毒性机制
- 批准号:
10684434 - 财政年份:2023
- 资助金额:
$ 34.65万 - 项目类别: