Degradable orthopedic hardware

可降解矫形硬件

基本信息

  • 批准号:
    9438859
  • 负责人:
  • 金额:
    $ 44.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2020-11-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION: Degradable orthopedic repair devices would provide significant clinical benefits to overcome current limitations in bone remodeling, degradation kinetics and bone integration. Current options are limited primarily to nondegradable metals which have become the gold standard for orthopedic repairs due to robust mechanical properties and ease of implantation, while limitations of stress shielding, infections, bone remodeling and second surgical removals have shifted significant interest toward degradable devices. Orthopedic screws and plates composed of polylactic and polyglycolic acids have become lead candidates for degradable hardware with a reduced need for removal and improved bone remodeling. However, polylactic and polyglycolic acid screws and plates are associated with inflammatory reactions due to degradation products, osteolysis and incomplete bone remodeling. Thus, orthopedic hardware that has appropriate mechanical properties, tunable and full degradation and is pro-osteogenic would have a major impact on orthopedic repairs in promoting accelerated healing, reducing second surgeries and improving long-term patient outcomes. Our long term goal is to develop fully degradable screws, plates and rods using silk protein functionalized by bioactive molecules to promote healthy bone remodeling and integration. The objective of the proposed research is to determine the ability of the proposed silk format to meet the structural needs of degradable orthopedic systems and successfully direct pro-osteogenic remodeling. We hypothesize that functionalized silk orthopedic hardware can be tuned to fully degrade over a 6-12 month time while promoting osteointegration to optimize utility in orthopedic repairs and meeting mechanical requirements. Our extensive preliminary in vitro and in vivo data support this hypothesis. The rationale for this research is to gain fundamental insight into the role of functionalized and degradable orthopedic screws and plates in accelerating healing and directing successful bone remodeling. The anticipated outcomes are expected to have a substantial positive impact on orthopedic repairs by presenting hardware designs capable of meeting mechanical needs of fracture fixation and addressing current limitations and complications. An interdisciplinary team of investigators who have a history of collaborative efforts will conduct the studies [David Kaplan - silk biomaterials, bioengineering, Ara Nazarian - biomechanics/biomiaging and animal studies, Sam Lin and Brian Snyder - orthopedic surgeons].
 描述:可降解的骨科修复装置将提供显着的临床益处,以克服目前在骨重塑、降解动力学和骨整合方面的限制。目前的选择主要限于不可降解的金属,由于其强大的机械性能和易于使用,这些金属已成为骨科修复的黄金标准。植入,而应力屏蔽、感染、骨重塑和二次手术切除的限制已经将人们的极大兴趣转向由聚乳酸和聚乙醇酸组成的骨科螺钉和板。聚乳酸和聚乙醇酸螺钉和板已成为可降解硬件的主要候选者,可减少移除的需要并改善骨重塑,但聚乳酸和聚乙醇酸螺钉和板与降解产物、骨溶解和不完全骨重塑引起的炎症反应有关。机械性能、可调节和完全降解以及促骨将对骨科修复产生重大影响,促进加速愈合、减少二次手术和改善长期患者预后。我们的长期目标是开发完全可降解的材料。使用由生物活性分子功能化的丝蛋白来促进健康的骨骼重塑和整合的螺钉、板和棒本研究的目的是确定所提出的丝格式满足可降解骨科系统的结构需求并成功直接促进骨修复的能力。我们努力使功能化丝绸矫形硬件能够在 6-12 个月的时间内完全降解,同时促进骨整合,以优化矫形修复的效用并满足我们广泛的体外和机械要求。体内数据支持这一假设。这项研究的基本原理是深入了解功能化和可降解的骨科螺钉和板在加速愈合和指导成功的骨重塑方面的作用,预计会对骨科产生重大的积极影响。通过提出能够满足骨折固定的机械需求并解决当前限制和并发症的硬件设计,具有合作历史的跨学科研究小组将进行研究[David Kaplan - 丝绸生物材料,生物工程, Ara Nazarian - 生物力学/生物医学和动物研究,Sam Lin 和 Brian Snyder - 整形外科医生]。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAVID L. KAPLAN其他文献

DAVID L. KAPLAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAVID L. KAPLAN', 18)}}的其他基金

2023 Silk Proteins and the Transition to Biotechnologies Gordon Research Conference
2023 年丝蛋白和向生物技术的过渡戈登研究会议
  • 批准号:
    10681751
  • 财政年份:
    2023
  • 资助金额:
    $ 44.48万
  • 项目类别:
Tissue Engineering Resource Center
组织工程资源中心
  • 批准号:
    10213714
  • 财政年份:
    2019
  • 资助金额:
    $ 44.48万
  • 项目类别:
Tissue Engineering Resource Center
组织工程资源中心
  • 批准号:
    10434730
  • 财政年份:
    2019
  • 资助金额:
    $ 44.48万
  • 项目类别:
Tissue Engineering Resource Center
组织工程资源中心
  • 批准号:
    10683745
  • 财政年份:
    2019
  • 资助金额:
    $ 44.48万
  • 项目类别:
3D Intestinal Tissues
3D 肠道组织
  • 批准号:
    9312411
  • 财政年份:
    2017
  • 资助金额:
    $ 44.48万
  • 项目类别:
Functional three dimensional brain-like tissues to study mechanisms of traumatic brain injury
功能性三维类脑组织用于研究创伤性脑损伤的机制
  • 批准号:
    8942566
  • 财政年份:
    2015
  • 资助金额:
    $ 44.48万
  • 项目类别:
Degradable orthopedic hardware
可降解矫形硬件
  • 批准号:
    8881483
  • 财政年份:
    2015
  • 资助金额:
    $ 44.48万
  • 项目类别:
Functional three dimensional brain-like tissues to study mechanisms of traumatic brain injury
功能性三维类脑组织用于研究创伤性脑损伤的机制
  • 批准号:
    9266832
  • 财政年份:
    2015
  • 资助金额:
    $ 44.48万
  • 项目类别:
Multifunctional Tropoelastin-Silk Biomaterial Systems
多功能原弹性蛋白-丝生物材料系统
  • 批准号:
    8706863
  • 财政年份:
    2012
  • 资助金额:
    $ 44.48万
  • 项目类别:
Multifunctional Tropoelastin-Silk Biomaterial Systems
多功能原弹性蛋白-丝生物材料系统
  • 批准号:
    8518096
  • 财政年份:
    2012
  • 资助金额:
    $ 44.48万
  • 项目类别:

相似国自然基金

基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
选区激光熔化用高耐热高强镍基高温合金设计与高温强韧化机理研究
  • 批准号:
    52371012
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
深海大尺度异种钛合金环肋柱壳的失效破坏机理及安全性评估方法研究
  • 批准号:
    52371282
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于可剪切/不可剪切纳米析出相协同调控的铝合金强韧化机制研究
  • 批准号:
    52301162
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
辐照锆合金不同滑移系无缺陷通道的形成机理研究
  • 批准号:
    12302279
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Deciphering the relationship between bioresorbable magnesium alloy corrosion and the inflammatory microenvironment of the neotinima
解读生物可吸收镁合金腐蚀与新生细胞炎症微环境之间的关系
  • 批准号:
    10580115
  • 财政年份:
    2023
  • 资助金额:
    $ 44.48万
  • 项目类别:
Chip-Scale Intraoperative Optical Navigation with Immunotargeted Upconverting Nanoparticles
使用免疫靶向上转换纳米颗粒的芯片级术中光学导航
  • 批准号:
    10743477
  • 财政年份:
    2023
  • 资助金额:
    $ 44.48万
  • 项目类别:
Micro-invasive biochemical sampling of brain interstitial fluid for investigating neural pathology
脑间质液微创生化取样用于研究神经病理学
  • 批准号:
    10090597
  • 财政年份:
    2020
  • 资助金额:
    $ 44.48万
  • 项目类别:
Micro-invasive biochemical sampling of brain interstitial fluid for investigating neural pathology
脑间质液微创生化取样用于研究神经病理学
  • 批准号:
    10304119
  • 财政年份:
    2020
  • 资助金额:
    $ 44.48万
  • 项目类别:
Micro-invasive biochemical sampling of brain interstitial fluid for investigating neural pathology
脑间质液微创生化取样用于研究神经病理学
  • 批准号:
    10517496
  • 财政年份:
    2020
  • 资助金额:
    $ 44.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了