Tissue Engineering Resource Center
组织工程资源中心
基本信息
- 批准号:10434730
- 负责人:
- 金额:$ 32.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintBiocompatible MaterialsBiological ProcessBiologyBiomedical EngineeringBiopolymersBiotinCarbodiimidesCellsChemistryCicatrixCollaborationsCollagenComplexCouplingCrystallizationDepositionDevicesDisease modelElastinEnvironmentEnzymesExtracellular MatrixFiberFibrosisFree RadicalsFreeze DryingGelGenetic EngineeringGoalsHigher Order Chromatin StructureHyaluronic AcidImmune responseIn VitroInflammationLightMechanicsMediatingMicrofluidicsModificationNatural regenerationOutcomeOxygenPolymersPolysaccharidesPropertyReactionReactive Oxygen SpeciesRegenerative MedicineResourcesSeriesSignal TransductionSilkSiteSourceStimulusStreptavidinStructural ProteinStructureStudy modelsSystemTemperatureTherapeuticTimeTissue EngineeringTissue ModelTissuesVariantVascularizationaqueousbasebiomaterial compatibilitycopolymercrosslinkcytokinedesigndynamic systemelectric fieldexperiencefunctional restorationimprovedin vivomechanical propertiesmonomernerve supplypreservationpublic health relevanceregeneration modelresponserestorationscaffoldself assemblytissue regenerationtissue support frame
项目摘要
SUMMARY
TRD1 will focus on the design and implementation of adaptive-responsive biomaterials to meet the
goals of the P41. These are biomaterials that can sense and actuate cells or respond to the local
environment to drive the functional restoration of complex tissue structures, in vitro and in vivo. The
hypothesis is that biomaterial systems with integrated features for activation/response can provide
specific benefits for designing scaffolds for restoration of tissue structure and function. These new
material systems will be integrated with the needs and goals of the other TRDs to optimize tissue
outcomes at both the fundamental and translational levels. The ultimate goal is to develop biomaterial
systems for functional restoration of complex tissue structures based on the response to changes in the
local environment (intrinsic signaling) or via applied changes (extrinsic signaling). The plans are to
develop materials that provide adaptive responses to changes in local biology and conditions (e.g., pH,
temperature reactive oxygen, enzymes) or to external signals (e.g., light, electric fields) to effect a
change to improve tissue function or regeneration goals. Control of mechanical properties, degradation
and release of bioactive factors to respond to local changes are examples of dynamic response-control
goals. The core biomaterials will be based on biopolymers (e.g., elastins, collagens, silks, hyaluronic
acid, others) as bioengineered variants and composites. Three specific aims will be pursued. Aim 1:
Biomaterials that dynamically change properties in response to local signals. These biopolymer
systems will provide core functions for sensing-response using silk-elastin chemistry and composite
designs with hyaluronic acid and collagen, for a broad range of utility for different cell and tissue needs.
Aim 2: Biomaterials that change properties on demand, in response to external stimuli. The
focus will be on light activation systems (via specific chemistries) or electric field-mediated changes (via
incorporated conductive components). The goal is to control the material volume, mechanics, and
delivery of bioactive factors in an on-demand mode, using external sources (light, electric field), to
control cell and tissue outcomes. Aim 3: “Smart” scaffolds for tissue regeneration and modeling of
disease. Scaffold designs based on the materials from Aims 1 and 2 will be utilized to generate
functional devices and tissue models for studies in TRD1, 2 and 3, in vitro and in vivo.
概括
TRD1将专注于自适应响应生物材料的设计和实施,以满足
P41 的目标是这些生物材料可以感知和驱动细胞或对局部做出反应。
驱动体外和体内复杂组织结构功能恢复的环境。
假设具有激活/响应集成特征的生物材料系统可以提供
这些新功能对于设计用于恢复组织结构和功能的支架具有特殊的好处。
材料系统将与其他 TRD 的需求和目标相结合,以优化组织
最终目标是开发生物材料。
基于对变化的响应来恢复复杂组织结构的功能的系统
本地环境(内在信号)或通过应用变化(外在信号)。
开发能够对当地生物学和条件(例如 pH、pH、
温度、活性氧、酶)或外部信号(例如光、电场)来影响
改变以改善组织功能或再生目标控制机械性能、降解。
和释放生物活性因子以响应局部变化是动态响应控制的例子
核心生物材料将基于生物聚合物(例如弹性蛋白、胶原蛋白、丝、透明质酸)。
酸、其他)作为生物工程变体和复合材料将实现三个具体目标:
这些生物聚合物可根据局部信号动态改变特性。
系统将利用丝弹性蛋白化学和复合材料提供传感响应的核心功能
采用透明质酸和胶原蛋白设计,可满足不同细胞和组织的需求。
目标 2:生物材料能够根据需要改变特性,以响应外部刺激。
重点将放在光激活系统(通过特定化学物质)或电场介导的变化(通过
合并的导电组件)的目标是控制材料体积、力学和
使用外部来源(光、电场)以按需模式输送生物活性因子,以
目标 3:用于组织再生和建模的“智能”支架。
基于目标 1 和 2 的材料的支架设计将用于生成。
用于 TRD1、2 和 3 体外和体内研究的功能装置和组织模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID L. KAPLAN其他文献
DAVID L. KAPLAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID L. KAPLAN', 18)}}的其他基金
2023 Silk Proteins and the Transition to Biotechnologies Gordon Research Conference
2023 年丝蛋白和向生物技术的过渡戈登研究会议
- 批准号:
10681751 - 财政年份:2023
- 资助金额:
$ 32.67万 - 项目类别:
Functional three dimensional brain-like tissues to study mechanisms of traumatic brain injury
功能性三维类脑组织用于研究创伤性脑损伤的机制
- 批准号:
8942566 - 财政年份:2015
- 资助金额:
$ 32.67万 - 项目类别:
Functional three dimensional brain-like tissues to study mechanisms of traumatic brain injury
功能性三维类脑组织用于研究创伤性脑损伤的机制
- 批准号:
9266832 - 财政年份:2015
- 资助金额:
$ 32.67万 - 项目类别:
Multifunctional Tropoelastin-Silk Biomaterial Systems
多功能原弹性蛋白-丝生物材料系统
- 批准号:
8706863 - 财政年份:2012
- 资助金额:
$ 32.67万 - 项目类别:
Multifunctional Tropoelastin-Silk Biomaterial Systems
多功能原弹性蛋白-丝生物材料系统
- 批准号:
8518096 - 财政年份:2012
- 资助金额:
$ 32.67万 - 项目类别:
相似国自然基金
基于温敏磁性水凝胶材料对循环肿瘤细胞的保存及机制研究
- 批准号:21908160
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于微流控芯片的镁合金降解与血管内皮重建交互作用的研究
- 批准号:51901137
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
骨折修复用多孔铌钽钛生物材料的有机模板法制备及表面微环境构建
- 批准号:51904357
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
骨基质仿生矿化体系的优化设计和切应力介导的纤维内分层矿化研究
- 批准号:11872097
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
多层聚电解质距离调控的金纳米棒等离基元增强稀土荧光的生物材料构建及其诊疗一体化研究
- 批准号:51801001
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Sacrificial templated grafts to encourage bone healing through mechanotransduction
牺牲模板移植物通过机械传导促进骨愈合
- 批准号:
10811305 - 财政年份:2023
- 资助金额:
$ 32.67万 - 项目类别:
3D Bioprinted Nipple-Areolar Complex Implants
3D 生物打印乳头乳晕复合植入物
- 批准号:
10672784 - 财政年份:2023
- 资助金额:
$ 32.67万 - 项目类别:
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
- 批准号:
10749330 - 财政年份:2023
- 资助金额:
$ 32.67万 - 项目类别:
Quantifying the Race for the Surface via IV-MLSM
通过 IV-MLSM 量化表面竞赛
- 批准号:
10455337 - 财政年份:2022
- 资助金额:
$ 32.67万 - 项目类别:
Computational model-driven design to mitigate vein graft failure after coronary artery bypass
计算模型驱动设计减轻冠状动脉搭桥术后静脉移植失败
- 批准号:
10539814 - 财政年份:2022
- 资助金额:
$ 32.67万 - 项目类别: