Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
基本信息
- 批准号:8993954
- 负责人:
- 金额:$ 24.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-20 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:AntibioticsAwardBacteriaBacterial GenomeBehaviorBindingBinding SitesBiologyCarbonCell CommunicationCellsChloroformCommunitiesComplexComputing MethodologiesDNADNA BindingDNA-Binding ProteinsDNase I hypersensitive sites sequencingDataDetectionDevelopmentEnvironmentEnvironmental HazardsEscherichia coliEukaryotaEvaluationEvolutionExclusionGene ExpressionGene Expression ProfileGene Expression RegulationGenesGeneticGenetic TranscriptionGenomeGenomicsGoalsGrantHeartHigh-Throughput Nucleotide SequencingHousekeepingHumanIndividualInterphaseKnowledgeLifeLinkLocationLogicMapsMeasurementMeasuresMentorsMessenger RNAMethodsMicrobeModelingMolecular ModelsMutationOrganismOutputPhasePhenolsPhenotypePhysiologicalPlayPopulationProcessProteinsProteomicsRegulatory ElementResearchResistanceResolutionRoleSignal TransductionSiteSourceStagingStatistical ModelsStimulusSystems BiologyTechnologyTestingTimeTissue DifferentiationTranscriptional RegulationValidationVertebral columnWorkabstractingantimicrobial drugaqueousbasechromatin immunoprecipitationcomputer frameworkcomputerized data processingcomputerized toolscrosslinkdensitydirected evolutiondrug developmentextracellularfollow-upgenetic regulatory proteingenome-wideimprovedinformation gatheringinsightmetabolomicsmicrobial communitymolecular modelingnovelpreferenceprogramsrapid techniqueresearch studyresistance mechanismresponserhotermination factortooltranscription factorultraviolet irradiation
项目摘要
Abstract
The regulation of gene expression plays a pivotal role in all aspects of biology, from the manner in which bacteria
respond to their environment to the differentiation of tissues in higher eukaryotes. In the era of genomics,
proteomics, and metabolomics, however, biologists are still bereft of a generally applicable method for rapid
determination of the regulatory logic underlying the pattern of gene expression in a cell under a given set
of conditions. This logic arises in large part from the binding of transcription factors (TFs) which can either
repress or activate expression of nearby genes. The K99/R00 project proposed here aims to contribute a
method, termed IPODHR, for obtaining a genome-wide snapshot of the transcriptional regulatory state of the
cell, by providing the locations and identities of all transcription factors bound to the genome under physiological
conditions. Understanding and quantitatively modeling the regulatory networks of bacterial cells is crucial both
for the successful development of new antibiotics, and for the rational manipulation of microbial communities
such as that in the human gut.
IPODHR is superficially similar to chromatin immunoprecipitation (ChIP) experiments, but instead of isolat-
ing a single protein (and any DNA bound to it), IPODHR isolates all protein-DNA complexes from crosslinked
lysates, using the fact that these complexes partition to the organic-aqueous interphase during phenol-chloroform
extraction. High throughput sequencing is used to reveal the locations of DNA-bound TFs. The resulting sig-
nal, representing overall protein occupancy throughout the genome, is then split during data processing into
contributions from different TFs and other DNA binding proteins, using a computational method that is currently
under development. Thus, unlike ChIP, only one experiment is required to study the entire regulatory state of
the cell under a given condition, and prior knowledge of the relevant TFs is not required.
At present, my ongoing research (including plans for the mentored phase of the award) is focused on
completing the experimental and computational aspects of the IPODHR framework. For the experimental com-
ponent, only small refinements appear necessary to improve spatial resolution further; validation experiments
and pilot applications will then be performed to confirm the sensitivity and specificity of the method to changing
physiological conditions. The computational methods required for partitioning the IPODHR binding profile are
also under active development, using a statistical model to assign peaks in the IPODHR density to particular
factors. In the process of these development and validation experiments, follow-ups will target TF binding sites
and specificities inferred from IPODHR data but not yet characterized in detail, further expanding our knowledge
of the E. coli transcriptional regulatory network by revealing new TFs and interactions. Successful completion
and application of IPODHR will provide the community with a transformative new tool to measure the transcrip-
tional regulatory logic of bacteria without detailed prior knowledge of the transcription factors involved.
Research planned for the independent phase will focus on the use of IPODHR, alongside other established
methods in bacterial systems biology, to obtain a complete understanding of how rewiring transcriptional net-
works can allow cells to adapt to novel conditions without the acquisition of new enzymatic capacities. I will
focus initially on a previously discovered mutation of the termination factor Rho that improves cellular fitness
under a variety of conditions, and appears to be representative of a broad class of mutations to housekeep-
ing proteins that occur in evolving bacterial populations. IPODHR will allow measurement of the changes in
transcriptional logic giving rise to previously observed adaptive outputs, and thus provide insight into the ex-
act mechanisms through which the perturbations under study alter TF behavior to give rise to the observed
changes in phenotype. As the rho mutation in question renders cells somewhat resistant to several classes of
antibiotics, it will be particularly useful to compare the mechanisms of this resistance with other known paths
to antibiotic tolerance.
If progress on the proposed aims is sufficiently rapid, near the end of the grant period adaptation of IPODHR
for use in bacteria other than E. coli may also begin. The massive scope of information provided by the method,
and lack of any need for specific prior knowledge or manipulation of the target organism, mean that IPODHR
has the promise to provide a huge advance in the understanding of transcriptional regulation in poorly studied
microbes. These applications of IPODHR will form the backbone of an R01 proposal to be prepared during the
late stages of the independent R00 phase.
抽象的
基因表达的调节在生物学的各个方面都起着关键作用,从细菌的方式来看
对他们的环境响应较高的真核生物中组织的分化。在基因组时代,
但是,蛋白质组学和代谢组学,生物学家仍然是一种通常适用于快速方法的方法
确定在给定集中基因表达模式的基因表达模式的确定
条件。这种逻辑在很大程度上源于转录因子(TF)的结合,这可以
抑制或激活附近基因的表达。这里提出的K99/R00项目旨在贡献
方法称为iPodhr,用于获得转录调节状态的全基因组快照
细胞,通过提供生理下与基因组结合的所有转录因子的位置和身份
状况。了解和定量对细菌细胞的调节网络进行建模都是至关重要的
为了成功开发新的抗生素,以及对微生物群落的合理操纵
例如人类肠道。
ipodhr与染色质免疫沉淀(CHIP)实验非常相似,但不是隔离
iPODHR与单个蛋白质(以及与之结合的任何DNA结合),将所有蛋白DNA复合物与交联的所有蛋白DNA复合物分离
裂解物,使用这些复合物在苯酚 - 氯仿期间分配到有机水相间的事实
萃取。高通量测序用于揭示DNA结合TF的位置。由此产生的sig-
NAL代表整个基因组的总体蛋白质占用率,然后在数据处理中分裂为
使用当前的计算方法,来自不同TF和其他DNA结合蛋白的贡献
正在开发。与芯片不同,只需要一个实验来研究整个调节状态
在给定条件下的单元格不需要相关TF的先验知识。
目前,我正在进行的研究(包括奖励的修订阶段的计划)都集中在
完成iPODHR框架的实验和计算方面。对于实验性com-
老板,似乎只有小规定才能进一步改善空间分辨率。验证实验
然后将执行试点申请,以确保更改方法的敏感性和特定城市
生理条件。分区iPodhr绑定程序所需的计算方法是
同样在主动发展下,使用统计模型将iPodhr密度的峰分配给特定
因素。在这些开发和验证实验的过程中,随访将针对TF结合位点
以及从iPodhr数据推断但尚未详细描述的特定城市,进一步扩展了我们的知识
大肠杆菌转录调节网络的范围通过揭示新的TF和相互作用。成功完成
iPodhr的应用将为社区提供一种变革性的新工具来衡量成绩单 -
细菌的构成调节逻辑,没有详细的先验了解所涉及的转录因子的知识。
独立阶段计划的研究将集中于iPodhr的使用,以及其他已建立的
细菌系统生物学中的方法,以完全了解如何重新布线转录网络
工作可以使细胞适应新的条件,而无需获得新的酶促能力。我会
最初专注于先前发现的终止因子Rho的突变,该突变改善了细胞舒适性
在各种条件下,似乎代表了家政的广泛突变 -
在不断发展的细菌种群中发生的蛋白质。 ipodhr将允许测量更改
转录逻辑产生以前观察到的自适应输出,从而提供了对ex的见解
所研究的扰动改变了TF行为以引起观察到的ACT机制
表型的变化。随着RHO突变使细胞在某种程度上具有对几类的抗性
抗生素,将这种抗性的机制与其他已知路径进行比较将特别有用
具有抗生素耐受性。
如果提议的目标的进展非常快,那么在授予期适应的结束接近ipodhr
用于大肠杆菌以外的细菌也可以开始使用。该方法提供的大量信息范围,
并且缺乏对目标生物的特定事先知识或操纵的任何需求,这意味着iPodhr
有望在理解不良研究的转录调节方面提供巨大的进步
微生物。 iPodhr的这些应用将形成R01提案的骨干,以便在
独立R00阶段的后期阶段。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lydia Freddolino其他文献
Lydia Freddolino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lydia Freddolino', 18)}}的其他基金
Bacteriophage Mu as Tool to Study Genome Organization in Bacteria and Eukaryotes
噬菌体 Mu 作为研究细菌和真核生物基因组组织的工具
- 批准号:
10265837 - 财政年份:2021
- 资助金额:
$ 24.87万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10216988 - 财政年份:2018
- 资助金额:
$ 24.87万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10622670 - 财政年份:2018
- 资助金额:
$ 24.87万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9892610 - 财政年份:2018
- 资助金额:
$ 24.87万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10674978 - 财政年份:2018
- 资助金额:
$ 24.87万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9980452 - 财政年份:2018
- 资助金额:
$ 24.87万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10535650 - 财政年份:2018
- 资助金额:
$ 24.87万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10440347 - 财政年份:2018
- 资助金额:
$ 24.87万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10225420 - 财政年份:2018
- 资助金额:
$ 24.87万 - 项目类别:
Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
- 批准号:
8735166 - 财政年份:2013
- 资助金额:
$ 24.87万 - 项目类别:
相似国自然基金
生态补奖背景下草原牧户实现自主性减畜的机制、路径和政策研究
- 批准号:72374130
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
草原生态补奖政策对牧户兼业行为的影响机理研究——以内蒙古为例
- 批准号:72363025
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
- 批准号:72104063
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
草原生态补奖政策激励-约束下牧民生产行为决策机制及生态效应
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:
相似海外基金
Sickle cell disease gut dysbiosis effects on CNS pain processing
镰状细胞病肠道菌群失调对中枢神经系统疼痛处理的影响
- 批准号:
10747045 - 财政年份:2023
- 资助金额:
$ 24.87万 - 项目类别:
Leveraging evolutionary analyses and machine learning to discover multiscale molecular features associated with antibiotic resistance
利用进化分析和机器学习发现与抗生素耐药性相关的多尺度分子特征
- 批准号:
10658686 - 财政年份:2023
- 资助金额:
$ 24.87万 - 项目类别:
Characterizing the preterm infant skin microbiome and microbial shifts that precede neonatal late onset sepsis (LOS)
描述早产儿皮肤微生物组的特征以及新生儿迟发性败血症 (LOS) 之前的微生物变化
- 批准号:
10664071 - 财政年份:2023
- 资助金额:
$ 24.87万 - 项目类别:
Pyocins as antibacterials to treat Pseudomonas aeruginosa infections
脓毒素作为抗菌药物治疗铜绿假单胞菌感染
- 批准号:
10727705 - 财政年份:2023
- 资助金额:
$ 24.87万 - 项目类别:
Clinical and host microbiome features in the development of acute otitis media
急性中耳炎发生过程中的临床和宿主微生物组特征
- 批准号:
10735848 - 财政年份:2023
- 资助金额:
$ 24.87万 - 项目类别: