Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
基本信息
- 批准号:8735166
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-20 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAntibioticsAwardBacteriaBacterial GenomeBehaviorBindingBinding SitesBiologyCarbonCell CommunicationCellsChloroformCommunitiesComplexComputing MethodologiesDNADNA BindingDNA-Binding ProteinsDataDeoxyribonucleasesDetectionDevelopmentEnvironmentEnvironmental HazardsEscherichia coliEukaryotaEvaluationEvolutionExclusionGene ExpressionGene Expression ProfileGene Expression RegulationGenesGeneticGenetic TranscriptionGenomeGenomicsGoalsGrantHeartHigh-Throughput Nucleotide SequencingHousekeepingHumanIndividualInterphaseKnowledgeLifeLinkLocationLogicMapsMeasurementMeasuresMentorsMessenger RNAMethodsMicrobeModelingMolecular ModelsMutationOrganismOutputPhasePhenolsPhenotypePhysiologicalPlayPopulationProcessProteinsProteomicsRegulatory ElementResearchResistanceResolutionRoleSensitivity and SpecificitySignal TransductionSiteSourceSpecificityStagingStatistical ModelsStimulusSystems BiologyTechnologyTestingTimeTissue DifferentiationTranscriptional RegulationValidationVertebral columnantimicrobial drugaqueousbasechromatin immunoprecipitationcomputer frameworkcomputerized data processingcomputerized toolscrosslinkdensitydirected evolutiondrug developmentextracellularfitnessfollow-upgenetic regulatory proteingenome-wideimprovedinformation gatheringinsightmetabolomicsmicrobial communitymolecular modelingnovelpreferenceprogramspublic health relevancerapid techniqueresearch studyresistance mechanismresponserhotermination factortooltranscription factorultraviolet irradiation
项目摘要
DESCRIPTION (provided by applicant): The regulation of gene expression plays a pivotal role in all aspects of biology, from the manner in which bacteria respond to their environment to the differentiation of tissues in higher eukaryotes. In the era of genomics, proteomics, and metabolomics, however, biologists are still bereft of a generally applicable method for rapid determination of the regulatory logic underlying the pattern of gene expression in a cell under a given set of conditions. This logic arises in large part from the binding of transcription factors (TFs) which can either repress or activate expression of nearby genes. The K99/R00 project proposed here aims to contribute a method, termed IPODHR, for obtaining a genome-wide snapshot of the transcriptional regulatory state of the cell, by providing the locations and identities of all transcription factors bound to the genome under physiological conditions. Understanding and quantitatively modeling the regulatory networks of bacterial cells is crucial both for the successful development of new antibiotics, and for the rational manipulation of microbial communities such as that in the human gut. IPODHR is superficially similar to chromatin immunoprecipitation (ChIP) experiments, but instead of isolating a single protein (and any DNA bound to it), IPODHR isolates all protein-DNA complexes from crosslinked lysates, using the fact that these complexes partition to the organic-aqueous interphase during phenol-chloroform extraction. High throughput sequencing is used to reveal the locations of DNA-bound TFs. The resulting signal, representing overall protein occupancy throughout the genome, is then split during data processing into contributions from different TFs and other DNA binding proteins, using a computational method that is currently under development. Thus, unlike ChIP, only one experiment is required to study the entire regulatory state of the cell under a given condition, and prior knowledge of the relevant TFs is not required. At present, my ongoing research (including plans for the mentored phase of the award) is focused on completing the experimental and computational aspects of the IPODHR framework. For the experimental component, only small refinements appear necessary to improve spatial resolution further; validation experiments and pilot applications will then be performed to confirm the sensitivity and specificity of the method to changing physiological conditions. The computational methods required for partitioning the IPODHR binding profile are also under active development, using a statistical model to assign peaks in the IPODHR density to particular factors. In the process of these development and validation experiments, follow-ups will target TF binding sites and specificities inferred from IPODHR data but not yet characterized in detail, further expanding our knowledge of the E. coli transcriptional regulatory network by revealing new TFs and interactions. Successful completion and application of IPODHR will provide the community with a transformative new tool to measure the transcriptional regulatory logic of bacteria without detailed prior knowledge of the transcription factors involved. Research planned for the independent phase will focus on the use of IPODHR, alongside other established methods in bacterial systems biology, to obtain a complete understanding of how rewiring transcriptional networks can allow cells to adapt to novel conditions without the acquisition of new enzymatic capacities. I will focus initially on a previously discovered mutation of the termination factor Rh that improves cellular fitness under a variety of conditions, and appears to be representative of a broad class of mutations to housekeeping proteins that occur in evolving bacterial populations. IPODHR will allow measurement of the changes in transcriptional logic giving rise to previously observed adaptive outputs, and thus provide insight into the exact mechanisms through which the perturbations under study alter TF behavior to give rise to the observed changes in phenotype. As the rho mutation in question renders cells somewhat resistant to several classes of antibiotics, it will be particularly useful to compare the mechanisms of this resistance with other known paths to antibiotic tolerance. If progress on the proposed aims is sufficiently rapid,
near the end of the grant period adaptation of IPODHR for use in bacteria other than E. coli may also begin. The massive scope of information provided by the method, and lack of any need for specific prior knowledge or manipulation of the target organism, mean that IPODHR has the promise to provide a huge advance in the understanding of transcriptional regulation in poorly studied microbes. These applications of IPODHR will form the backbone of an R01 proposal to be prepared during the late stages of the independent R00 phase.
描述(由申请人提供):基因表达的调节在生物学的各个方面都发挥着关键作用,从细菌对其环境的反应方式到高等真核生物中组织的分化。然而,在基因组学、蛋白质组学和代谢组学时代,生物学家仍然缺乏一种普遍适用的方法来快速确定给定条件下细胞中基因表达模式的调控逻辑。这种逻辑在很大程度上源于转录因子(TF)的结合,转录因子可以抑制或激活附近基因的表达。这里提出的K99/R00项目旨在提供一种称为IPODHR的方法,通过提供在生理条件下与基因组结合的所有转录因子的位置和身份,获得细胞转录调控状态的全基因组快照。了解细菌细胞的调节网络并对其进行定量建模对于成功开发新抗生素以及合理操纵微生物群落(例如人类肠道中的微生物群落)至关重要。 IPODHR 表面上类似于染色质免疫沉淀 (ChIP) 实验,但 IPODHR 不是分离单个蛋白质(以及与其结合的任何 DNA),而是从交联裂解物中分离所有蛋白质-DNA 复合物,利用这些复合物分配到有机-苯酚-氯仿萃取过程中的水相。高通量测序用于揭示 DNA 结合 TF 的位置。所产生的信号代表整个基因组中蛋白质的总体占据情况,然后在数据处理过程中使用目前正在开发的计算方法将其分解为来自不同 TF 和其他 DNA 结合蛋白的贡献。因此,与 ChIP 不同,只需要一次实验即可研究给定条件下细胞的整个调控状态,并且不需要相关 TF 的先验知识。 目前,我正在进行的研究(包括该奖项的指导阶段的计划)重点是完成 IPODHR 框架的实验和计算方面。对于实验组件,似乎只需要进行小的改进即可进一步提高空间分辨率;然后将进行验证实验和试点应用,以确认该方法对变化的生理条件的敏感性和特异性。划分 IPODHR 结合谱所需的计算方法也在积极开发中,使用统计模型将 IPODHR 密度峰值分配给特定因素。在这些开发和验证实验的过程中,后续研究将针对从 IPODHR 数据推断但尚未详细表征的 TF 结合位点和特异性,通过揭示新的 TF 和相互作用,进一步扩展我们对大肠杆菌转录调控网络的了解。 IPODHR 的成功完成和应用将为业界提供一种变革性的新工具来测量细菌的转录调控逻辑,而无需事先详细了解所涉及的转录因子。 独立阶段计划的研究将重点关注 IPODHR 的使用以及细菌系统生物学中其他已建立的方法,以全面了解转录网络的重新布线如何使细胞能够在不获得新的酶能力的情况下适应新的条件。我将首先关注先前发现的终止因子 Rh 的突变,该突变可改善多种条件下的细胞适应性,并且似乎代表了进化细菌群体中发生的一类管家蛋白突变。 IPODHR 将允许测量转录逻辑的变化,从而产生先前观察到的适应性输出,从而深入了解所研究的扰动改变 TF 行为以引起观察到的表型变化的确切机制。由于所讨论的 rho 突变使细胞对几类抗生素产生一定的耐药性,因此将这种耐药性的机制与其他已知的抗生素耐受途径进行比较将特别有用。 如果拟议目标的进展足够快,
在授权期即将结束时,IPODHR 也可能开始适应用于大肠杆菌以外的细菌。该方法提供的大量信息,并且不需要任何特定的先验知识或对目标生物体的操作,意味着IPODHR有望在了解研究不足的微生物的转录调控方面取得巨大进展。 IPODHR 的这些应用将构成在独立 R00 阶段后期准备的 R01 提案的支柱。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deficiencies in Molecular Dynamics Simulation-Based Prediction of Protein-DNA Binding Free Energy Landscapes.
- DOI:10.1021/acs.jpcb.6b12450
- 发表时间:2017-05-25
- 期刊:
- 影响因子:0
- 作者:Khabiri M;Freddolino PL
- 通讯作者:Freddolino PL
Interfacial Activation of Candida antarctica Lipase B: Combined Evidence from Experiment and Simulation.
- DOI:10.1021/acs.biochem.5b00586
- 发表时间:2015-09-29
- 期刊:
- 影响因子:2.9
- 作者:Zisis T;Freddolino PL;Turunen P;van Teeseling MC;Rowan AE;Blank KG
- 通讯作者:Blank KG
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lydia Freddolino其他文献
Lydia Freddolino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lydia Freddolino', 18)}}的其他基金
Bacteriophage Mu as Tool to Study Genome Organization in Bacteria and Eukaryotes
噬菌体 Mu 作为研究细菌和真核生物基因组组织的工具
- 批准号:
10265837 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10216988 - 财政年份:2018
- 资助金额:
$ 3万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10622670 - 财政年份:2018
- 资助金额:
$ 3万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9892610 - 财政年份:2018
- 资助金额:
$ 3万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10674978 - 财政年份:2018
- 资助金额:
$ 3万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9980452 - 财政年份:2018
- 资助金额:
$ 3万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10535650 - 财政年份:2018
- 资助金额:
$ 3万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10440347 - 财政年份:2018
- 资助金额:
$ 3万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10225420 - 财政年份:2018
- 资助金额:
$ 3万 - 项目类别:
Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
- 批准号:
8993954 - 财政年份:2013
- 资助金额:
$ 3万 - 项目类别:
相似国自然基金
基于Fe-N-BC/PMS体系的自由基与非自由基协同降解地下水中磺胺类抗生素的机制研究
- 批准号:42377036
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于可逆相分离构建靶向纳米抗生素用于克服CRE多重耐药机制的研究
- 批准号:82373781
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
放线菌吲哚-噁唑类抗生素的生物合成机制及其组合生物合成研究
- 批准号:32360009
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
排水管网沉积物中抗生素对功能菌降解PAHs的影响机制
- 批准号:
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:
基于量子点指纹图谱和深度卷积神经网络的水体抗生素检测方法研究
- 批准号:42307546
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
High-throughput disulfide and FRET scanning to reveal protein conformational ensembles in vitro and in vivo.
高通量二硫键和 FRET 扫描可揭示体外和体内蛋白质构象整体。
- 批准号:
10191303 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Beta-Lactamase Inhibitors Sensitize Multidrug-Resistant Gram-negative Pathogens to Innate Immune Clearance
β-内酰胺酶抑制剂使多重耐药革兰氏阴性病原体对先天免疫清除敏感
- 批准号:
10219776 - 财政年份:2020
- 资助金额:
$ 3万 - 项目类别:
The regulation and function of platelet FcARIIA in sepsis
血小板FcARIIA在脓毒症中的调控及功能
- 批准号:
10267183 - 财政年份:2020
- 资助金额:
$ 3万 - 项目类别:
Biofilm disrupting antibody to treat respiratory and musculoskeletal infections
生物膜破坏抗体用于治疗呼吸道和肌肉骨骼感染
- 批准号:
10460560 - 财政年份:2020
- 资助金额:
$ 3万 - 项目类别: