Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
基本信息
- 批准号:10225420
- 负责人:
- 金额:$ 37.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqArchitectureAreaBacteriaBacterial Antibiotic ResistanceBacterial ChromosomesBacterial GenesBacterial GenomeBehaviorBindingBinding SitesBioinformaticsBiotechnologyDNA-Binding ProteinsDNA-Protein InteractionData SetEscherichia coliEukaryotaFoodGene Expression ProfileGene Expression RegulationGenetic TranscriptionGrowthHeterochromatinImpairmentInfectionInvestigationLogicMapsMolecularMolecular BiologyOrganismOrphanPhysiologicalPlayProcessProteinsRoleSignal TransductionSiteSourceStressStudy modelsTechnologyTherapeuticTimeTranscriptional RegulationVirulenceexperimental studyfollow-upglobal healthimprovedinnovationinterestpreventprotein profilingtooltranscription factor
项目摘要
Transcriptional regulation via protein-DNA interactions plays an important role in the regulatory networks of all
known organisms. Bacterial regulatory networks are now an especially fruitful target for detailed investigation:
as antibiotic-resistant bacteria continue to emerge as a global health threat, new and innovative approaches to
either preventing virulence or impairing bacterial growth are required. As our ability to predict and exploit
bacterial behavior for therapeutic purposes hinges on our understanding of the logic behind their regulatory
networks, it is of great utility to fully map those networks and the molecular mechanisms underlying them.
Several challenges, both old and newly recognized, stand in the way of a comprehensive
understanding of regulatory logic, even in well-studied models such as Escherichia coli. Progress in mapping
bacterial regulatory networks has in general been slow, requiring a steady march of mapping binding sites of
one transcription factor (TF) at a time. Even when such experiments are done, they can typically be performed
only under a handful of physiological conditions, and thus may miss key contributions of a transcription factor
in responding to specific environmental triggers. In addition, contrary to prevailing dogma over the last several
decades, we and others have recently gathered substantial evidence that bacterial chromosomes are in fact
not universally accessible to transcription, but rather, that they are packaged by densely protein occupied
heterochromatin-like regions that we refer to as EPODs, which influence both overall chromosomal
architecture and transcriptional regulation in particular. Progress in the area of fully charting bacterial regulation
of transcription via DNA binding proteins thus simultaneously requires more efficient coverage of transcription
factor space and an improved understanding of the role of larger-scale protein occupancy in gene regulation.
We have optimized a technology referred to as IPODHR for overall profiling of protein occupancy on
bacterial genomes, similar to the signal provided by ATAC-seq in eukaryotes. Building on IPODHR data sets as
a cornerstone, we are pursuing several highly innovative and efficient approaches to expand our
understanding of bacterial regulatory networks:
Massively parallel profiling of TF occupancy. Tracking IPODHR signal across known TF binding sites, in
tandem with appropriate bioinformatic analysis, provides occupancy information on dozens of known TFs in a
single experiment. We will utilize this technology to profile TF binding under a broad range of conditions.
Identification of orphan TFs. IPODHR profiles enable us to identify active regulatory sites under conditions of
interest, and identify the responsible TFs through follow-up experiments and bioinformatics.
Regulatory roles and molecular biology of EPODs. IPODHR has revealed the presence of EPODs across a
wide range of bacterial taxa, and we will determine the full impact of EPODs on condition-dependent gene
regulation, and the molecular mechanisms through which these regions are established.
通过蛋白质-DNA 相互作用进行的转录调控在所有生物体的调控网络中发挥着重要作用。
已知的生物体。细菌调控网络现在是详细调查的特别富有成效的目标:
随着抗生素耐药性细菌不断出现,成为全球健康威胁,新的创新方法
需要防止毒力或损害细菌生长。随着我们预测和利用的能力
用于治疗目的的细菌行为取决于我们对其调节背后逻辑的理解
网络,全面绘制这些网络及其背后的分子机制非常有用。
一些新旧挑战都阻碍了全面的发展
对调控逻辑的理解,即使是在大肠杆菌等经过充分研究的模型中。测绘进展
细菌调控网络总体上是缓慢的,需要稳步推进细菌结合位点的绘制
一次一个转录因子(TF)。即使完成了此类实验,通常也可以进行
仅在少数生理条件下,因此可能会错过转录因子的关键贡献
响应特定的环境触发因素。此外,与过去几年盛行的教条相反
几十年来,我们和其他人最近收集了大量证据,证明细菌染色体实际上是
并非普遍可用于转录,而是它们被密集的蛋白质包裹
我们称之为 EPOD 的异染色质样区域,它影响整个染色体
特别是结构和转录调控。全面绘制细菌调节图谱领域的进展
因此,通过 DNA 结合蛋白进行转录的同时需要更有效的转录覆盖
因子空间以及对更大规模蛋白质占据在基因调控中的作用的更好理解。
我们优化了一种称为 IPODHR 的技术,用于对蛋白质占用情况进行整体分析
细菌基因组,类似于真核生物中 ATAC-seq 提供的信号。以 IPODHR 数据集为基础
作为基石,我们正在寻求几种高度创新和高效的方法来扩展我们的业务
了解细菌调节网络:
TF 占用情况的大规模并行分析。跟踪已知 TF 结合位点的 IPODHR 信号,
与适当的生物信息分析相结合,提供了数十个已知 TF 的占用信息
单一实验。我们将利用这项技术来分析各种条件下的 TF 结合。
孤儿 TF 的识别。 IPODHR 配置文件使我们能够在以下条件下识别活跃的监管站点:
兴趣,并通过后续实验和生物信息学确定负责的转录因子。
EPOD 的监管作用和分子生物学。 IPODHR 揭示了 EPOD 的存在
广泛的细菌分类群,我们将确定 EPOD 对条件依赖性基因的全面影响
调节以及建立这些区域的分子机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lydia Freddolino其他文献
Lydia Freddolino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lydia Freddolino', 18)}}的其他基金
Bacteriophage Mu as Tool to Study Genome Organization in Bacteria and Eukaryotes
噬菌体 Mu 作为研究细菌和真核生物基因组组织的工具
- 批准号:
10265837 - 财政年份:2021
- 资助金额:
$ 37.99万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10216988 - 财政年份:2018
- 资助金额:
$ 37.99万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10622670 - 财政年份:2018
- 资助金额:
$ 37.99万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9892610 - 财政年份:2018
- 资助金额:
$ 37.99万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10674978 - 财政年份:2018
- 资助金额:
$ 37.99万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9980452 - 财政年份:2018
- 资助金额:
$ 37.99万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10535650 - 财政年份:2018
- 资助金额:
$ 37.99万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10440347 - 财政年份:2018
- 资助金额:
$ 37.99万 - 项目类别:
Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
- 批准号:
8993954 - 财政年份:2013
- 资助金额:
$ 37.99万 - 项目类别:
Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
- 批准号:
8735166 - 财政年份:2013
- 资助金额:
$ 37.99万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
- 批准号:
10768004 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Mechanosensor Function in the Control of Gas Exchange Surface Size and Composition
机械传感器在控制气体交换表面尺寸和成分中的功能
- 批准号:
10720855 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
The Role of Chromosome Y in Human Microglia and Neurodevelopment
Y 染色体在人类小胶质细胞和神经发育中的作用
- 批准号:
10680304 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Genetics of novelty seeking and propensity for drug abuse in outbred rats
近交系大鼠寻求新奇事物的遗传学和药物滥用倾向
- 批准号:
10669951 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Glyoxalase 1 and its Role in Metabolic Syndrome
乙二醛酶 1 及其在代谢综合征中的作用
- 批准号:
10656054 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别: