Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
基本信息
- 批准号:10225420
- 负责人:
- 金额:$ 37.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqArchitectureAreaBacteriaBacterial Antibiotic ResistanceBacterial ChromosomesBacterial GenesBacterial GenomeBehaviorBindingBinding SitesBioinformaticsBiotechnologyDNA-Binding ProteinsDNA-Protein InteractionData SetEscherichia coliEukaryotaFoodGene Expression ProfileGene Expression RegulationGenetic TranscriptionGrowthHeterochromatinImpairmentInfectionInvestigationLogicMapsMolecularMolecular BiologyOrganismOrphanPhysiologicalPlayProcessProteinsRoleSignal TransductionSiteSourceStressStudy modelsTechnologyTherapeuticTimeTranscriptional RegulationVirulenceexperimental studyfollow-upglobal healthimprovedinnovationinterestpreventprotein profilingtooltranscription factor
项目摘要
Transcriptional regulation via protein-DNA interactions plays an important role in the regulatory networks of all
known organisms. Bacterial regulatory networks are now an especially fruitful target for detailed investigation:
as antibiotic-resistant bacteria continue to emerge as a global health threat, new and innovative approaches to
either preventing virulence or impairing bacterial growth are required. As our ability to predict and exploit
bacterial behavior for therapeutic purposes hinges on our understanding of the logic behind their regulatory
networks, it is of great utility to fully map those networks and the molecular mechanisms underlying them.
Several challenges, both old and newly recognized, stand in the way of a comprehensive
understanding of regulatory logic, even in well-studied models such as Escherichia coli. Progress in mapping
bacterial regulatory networks has in general been slow, requiring a steady march of mapping binding sites of
one transcription factor (TF) at a time. Even when such experiments are done, they can typically be performed
only under a handful of physiological conditions, and thus may miss key contributions of a transcription factor
in responding to specific environmental triggers. In addition, contrary to prevailing dogma over the last several
decades, we and others have recently gathered substantial evidence that bacterial chromosomes are in fact
not universally accessible to transcription, but rather, that they are packaged by densely protein occupied
heterochromatin-like regions that we refer to as EPODs, which influence both overall chromosomal
architecture and transcriptional regulation in particular. Progress in the area of fully charting bacterial regulation
of transcription via DNA binding proteins thus simultaneously requires more efficient coverage of transcription
factor space and an improved understanding of the role of larger-scale protein occupancy in gene regulation.
We have optimized a technology referred to as IPODHR for overall profiling of protein occupancy on
bacterial genomes, similar to the signal provided by ATAC-seq in eukaryotes. Building on IPODHR data sets as
a cornerstone, we are pursuing several highly innovative and efficient approaches to expand our
understanding of bacterial regulatory networks:
Massively parallel profiling of TF occupancy. Tracking IPODHR signal across known TF binding sites, in
tandem with appropriate bioinformatic analysis, provides occupancy information on dozens of known TFs in a
single experiment. We will utilize this technology to profile TF binding under a broad range of conditions.
Identification of orphan TFs. IPODHR profiles enable us to identify active regulatory sites under conditions of
interest, and identify the responsible TFs through follow-up experiments and bioinformatics.
Regulatory roles and molecular biology of EPODs. IPODHR has revealed the presence of EPODs across a
wide range of bacterial taxa, and we will determine the full impact of EPODs on condition-dependent gene
regulation, and the molecular mechanisms through which these regions are established.
通过蛋白-DNA相互作用的转录调节在所有调节网络中起重要作用
已知生物。细菌调节网络现在是详细研究的特别富有成果的目标:
随着抗生素抗性细菌继续作为全球健康威胁,新的和创新的方法
需要预防毒力或需要损害细菌生长。作为我们预测和利用的能力
用于治疗目的的细菌行为取决于我们对其调节背后逻辑的理解
网络,充分绘制这些网络和它们的分子机制是非常有用的。
古老和新认可的几个挑战都妨碍了全面的挑战
即使在诸如大肠杆菌之类的经过精心研究的模型中,也了解监管逻辑。映射的进度
细菌调节网络通常很慢,需要稳定地映射结合位点
一次一个转录因子(TF)。即使完成了这样的实验,通常也可以执行它们
仅在少数生理条件下,因此可能会错过转录因子的关键贡献
在响应特定的环境触发时。此外,与最后几个
几十年来,我们和其他人最近收集了大量证据,表明细菌染色体实际上是
转录不普遍访问,而是,它们被密集的蛋白质包装而成
我们称为EPOD的异染色质样区域,这两者都会影响整体染色体
特别是结构和转录调节。完全绘制细菌调节的区域的进展
因此,通过DNA结合蛋白的转录同时需要更有效的转录覆盖率
因子空间以及对大规模蛋白质占用率在基因调节中的作用的提高理解。
我们优化了一项称为iPodhr的技术,用于蛋白质占用率的整体分析
细菌基因组,类似于真核生物中ATAC-SEQ提供的信号。在iPodhr数据集上构建
一个基石,我们正在追求几种高度创新和高效的方法来扩展我们的
了解细菌调节网络:
TF占用率的大规模平行分析。在已知的TF结合位点跟踪iPodhr信号,
与适当的生物信息学分析相连,提供有关数十个已知TF的占用信息
单个实验。我们将利用这项技术在广泛的条件下介绍TF绑定。
鉴定孤儿TF。 ipodhr剖面使我们能够在条件下识别主动调节站点
兴趣,并通过后续实验和生物信息学确定负责任的TF。
EPOD的调节作用和分子生物学。 ipodhr揭示了跨epods的存在
广泛的细菌分类群,我们将确定EPOD对依赖性基因的全部影响
调节以及建立这些区域的分子机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lydia Freddolino其他文献
Lydia Freddolino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lydia Freddolino', 18)}}的其他基金
Bacteriophage Mu as Tool to Study Genome Organization in Bacteria and Eukaryotes
噬菌体 Mu 作为研究细菌和真核生物基因组组织的工具
- 批准号:
10265837 - 财政年份:2021
- 资助金额:
$ 37.99万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10216988 - 财政年份:2018
- 资助金额:
$ 37.99万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10622670 - 财政年份:2018
- 资助金额:
$ 37.99万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9892610 - 财政年份:2018
- 资助金额:
$ 37.99万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10674978 - 财政年份:2018
- 资助金额:
$ 37.99万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9980452 - 财政年份:2018
- 资助金额:
$ 37.99万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10535650 - 财政年份:2018
- 资助金额:
$ 37.99万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10440347 - 财政年份:2018
- 资助金额:
$ 37.99万 - 项目类别:
Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
- 批准号:
8993954 - 财政年份:2013
- 资助金额:
$ 37.99万 - 项目类别:
Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
- 批准号:
8735166 - 财政年份:2013
- 资助金额:
$ 37.99万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
- 批准号:
10768004 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Mechanosensor Function in the Control of Gas Exchange Surface Size and Composition
机械传感器在控制气体交换表面尺寸和成分中的功能
- 批准号:
10720855 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
The Role of Chromosome Y in Human Microglia and Neurodevelopment
Y 染色体在人类小胶质细胞和神经发育中的作用
- 批准号:
10680304 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Genetics of novelty seeking and propensity for drug abuse in outbred rats
近交系大鼠寻求新奇事物的遗传学和药物滥用倾向
- 批准号:
10669951 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Glyoxalase 1 and its Role in Metabolic Syndrome
乙二醛酶 1 及其在代谢综合征中的作用
- 批准号:
10656054 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别: