Bacteriophage Mu as Tool to Study Genome Organization in Bacteria and Eukaryotes
噬菌体 Mu 作为研究细菌和真核生物基因组组织的工具
基本信息
- 批准号:10265837
- 负责人:
- 金额:$ 44.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalArchitectureBacillus subtilisBacteriaBacteriophage muBacteriophagesBinding SitesBiologicalCell LineCell physiologyCellsChemicalsChromatinChromosomesComplexDNADNA Transposable ElementsDataDependenceDevelopmentDevelopmental BiologyDiagnosticDiseaseDistantElectroporationElephantsEscherichia coliEukaryotaEvolutionFamilyFluorescenceFluorescence MicroscopyFluorescent in Situ HybridizationFrequenciesGene ExpressionGene Expression RegulationGene FamilyGene RearrangementGenesGenetic RecombinationGenomeGenomicsGram-Positive BacteriaHU ProteinHi-CHistonesHumanIn SituIn VitroLengthLigationLocationMalignant NeoplasmsMammalian CellMapsMeasurementMeasuresMediatingMethodologyMethodsMicroscopyModelingMolecular ConformationMonitorMutationNuclearOperonPathway interactionsPhysiologyPlayPropertyProteinsResolutionRibosomal RNARoleSiteSpecificityStructureTechniquesWorkYeastsbasechemical fixationchromosome conformation capturecomputerized data processingcondensincrosslinkdesignexperimental studygenomic locusinsightmammalian genomemu transposasethree dimensional structuretoolvector
项目摘要
Bacteriophage Mu as Tool to Study Genome Organization in Bacteria and Eukaryotes
The 3D configuration of the genome is complex, dynamic and crucial for gene regulation. The majority of
recent insights into genome conformations have been made using proximity-ligation based chromosome
conformation capture methods (e.g., 3C and HiC) and fluorescent in situ hybridization (FISH) techniques.
Drawbacks of both approaches are that they require chemical fixation, and in many cases require specification
of a small number of target sites on the genome to be tracked. Proximity ligation approaches selectively probe
only DNA-protein mediated interactions, have different efficiencies of detecting contacts with varying spatial
distances either within the same chromosome or between different chromosomes, and require several
additional in vitro steps after chemical crosslinking for obtaining and processing the data. We have developed
a new methodology that requires no chemical fixation or external perturbation and monitors DNA-DNA contact
frequencies in live cells. The methodology exploits the transposition mechanism of bacteriophage Mu, and has
been applied successfully to interrogate the 3D conformation of the E. coli genome. In contrast to the
dominance of short-range contacts seen with 3C/HiC, the Mu methodology captured all genomic contacts,
revealing that the genome was well-mixed. The methodology revealed widespread clustering of genetic loci in
3D space, many of the clusters consisting of co-regulated genes, which we subsequently validated using
fluorescence-based measurements. These key features of the E. coli genome – generalized mixing with
specific robust long-range contacts -- has not been detectable in studies using proximity ligation based
methods. Our measurements using Mu also revealed that proteins that compact DNA (condensin and a
histone-like protein) are responsible for the extensive long-range genomic contacts. In short, our Mu-based
measurements changed the static, short-range contact view of the E. coli genome generated by 3C/HiC
techniques to that of a dynamic chromosome anchored by specific contacts between biologically important
regions. We propose to extend the Mu methodology to bacteria that are not a natural host for Mu in order to
assess the universality of our findings among Bacteria, as well as to eukaryotes (first yeast and eventually
mammalian cell lines) by designing Mu vectors that will function in cells of each target species. Given that
chromatin folding is a major feature of gene regulation, and changes dynamically in development and disease,
it is imperative that we assess genome architecture in live cells. Our Mu transposition based methods provide
a new opportunity to unveil chromosome conformations without relying on the assumptions of proximity ligation
experiments. Our ability to accurately track chromosomal conformations will open new avenues for disease
diagnostics, disease target discovery and identification of structure-dependent gene regulation.
噬菌体 Mu 作为研究细菌和真核生物基因组组织的工具
基因组的 3D 结构是复杂的、动态的,对于基因调控至关重要。
最近对基因组构象的见解是使用基于染色体的邻近连接获得的
构象捕获方法(例如 3C 和 HiC)和荧光原位杂交 (FISH) 技术。
这两种方法的缺点是它们需要化学固定,并且在许多情况下需要规范
邻近连接方法选择性地探测基因组上的少数目标位点。
仅 DNA-蛋白质介导的相互作用,检测具有不同空间的接触的效率不同
同一染色体内或不同染色体之间的距离,并且需要多个
我们开发了化学交联后用于获取和处理数据的额外体外步骤。
一种无需化学固定或外部扰动并监测 DNA-DNA 接触的新方法
该方法利用噬菌体 Mu 的转座机制,并具有
已成功应用于询问大肠杆菌基因组的 3D 构象。
3C/HiC 中短程接触占主导地位,Mu 方法捕获了所有基因组接触,
该方法揭示了基因座的广泛聚集。
3D 空间,许多簇由共同调控的基因组成,我们随后使用它们进行了验证
基于荧光的测量。大肠杆菌基因组的这些关键特征 - 广义混合
特定的强远程接触——在使用基于邻近连接的研究中尚未检测到
我们使用 Mu 进行的测量还揭示了压缩 DNA 的蛋白质(凝缩蛋白和 a)。
组蛋白样蛋白)负责广泛的远程基因组接触。
测量改变了 3C/HiC 生成的大肠杆菌基因组的静态、短程接触视图
动态染色体的技术由生物学上重要的之间的特定接触锚定
我们建议将 Mu 方法扩展到非 Mu 天然宿主的细菌,以便
评估我们的研究结果在细菌以及真核生物(首先是酵母,最终是
哺乳动物细胞系),通过设计将在每个目标物种的细胞中发挥作用的 Mu 载体。
染色质折叠是基因调控的一个主要特征,在发育和疾病中动态变化,
我们必须评估活细胞中的基因组结构,并提供基于 Mu 转座的方法。
在不依赖邻近连接假设的情况下揭示染色体构象的新机会
我们准确追踪染色体构象的能力将为疾病开辟新途径。
诊断、疾病靶点发现和结构依赖性基因调控的鉴定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lydia Freddolino其他文献
Lydia Freddolino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lydia Freddolino', 18)}}的其他基金
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10216988 - 财政年份:2018
- 资助金额:
$ 44.71万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10622670 - 财政年份:2018
- 资助金额:
$ 44.71万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9892610 - 财政年份:2018
- 资助金额:
$ 44.71万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10674978 - 财政年份:2018
- 资助金额:
$ 44.71万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9980452 - 财政年份:2018
- 资助金额:
$ 44.71万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10535650 - 财政年份:2018
- 资助金额:
$ 44.71万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10440347 - 财政年份:2018
- 资助金额:
$ 44.71万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10225420 - 财政年份:2018
- 资助金额:
$ 44.71万 - 项目类别:
Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
- 批准号:
8993954 - 财政年份:2013
- 资助金额:
$ 44.71万 - 项目类别:
Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
- 批准号:
8735166 - 财政年份:2013
- 资助金额:
$ 44.71万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Functional genomics of hypothetical genes in Gram-positive bacteria
革兰氏阳性菌假设基因的功能基因组学
- 批准号:
10790885 - 财政年份:2023
- 资助金额:
$ 44.71万 - 项目类别:
A spatially resolved single-cell transcriptomic technique for microbial pathogenesis
用于微生物发病机制的空间分辨单细胞转录组技术
- 批准号:
10352579 - 财政年份:2022
- 资助金额:
$ 44.71万 - 项目类别:
Physiological and Developmental Role of Bacterial Ser/Thr Kinases
细菌丝氨酸/苏氨酸激酶的生理和发育作用
- 批准号:
10501586 - 财政年份:2022
- 资助金额:
$ 44.71万 - 项目类别:
A spatially resolved single-cell transcriptomic technique for microbial pathogenesis
用于微生物发病机制的空间分辨单细胞转录组技术
- 批准号:
10612336 - 财政年份:2022
- 资助金额:
$ 44.71万 - 项目类别:
Physiological and Developmental Role of Bacterial Ser/Thr Kinases
细菌丝氨酸/苏氨酸激酶的生理和发育作用
- 批准号:
10672307 - 财政年份:2022
- 资助金额:
$ 44.71万 - 项目类别: