Advanced Fetal Imaging
先进的胎儿成像
基本信息
- 批准号:8696352
- 负责人:
- 金额:$ 128.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAccelerationAddressAnatomyBirthBrainBrain imagingCerebrumCognitiveComputer softwareContrast MediaCounselingCustomDOTMADetectionDevelopmentDiagnosticDiffusionDiseaseEnsureEvaluationFeedbackFetal DevelopmentFetal MovementFetusFutureGoalsGrowth and Development functionHeadHeatingHereditary DiseaseHypoplastic Left Heart SyndromeImageImaging PhantomsImpaired cognitionInterventionLeadLifeMagnetic Resonance ImagingMeasurementMedicalMethodsMotionNeonatalNeuronsOperative Surgical ProceduresParentsPatient currently pregnantPerformancePerfusionPersonsPhasePhysiologic pulsePhysiologicalPhysiologyPositioning AttributePostnatal CareProcessProtocols documentationPublic HealthResolutionRoleSafetySpectrum AnalysisSpeedStructureTechniquesTemperatureTestingTimeTissuesTranslatingTransposition of Great VesselsValidationcongenital heart disorderdesigndisease diagnosisdisorder controlelectrical propertyfetalfetal medicinefollow-upimaging modalityimprovedin uteroin vivomeetingsmotion sensitivitymyelinationneuroimagingoptimismoutcome forecastpost interventionpostnatalpregnantpreventprospectivepublic health relevanceresearch studyresponsescreeningsynaptogenesistooltransmission process
项目摘要
DESCRIPTION (provided by applicant): The fetal period is a time of unparalleled brain growth and development and is arguably the most important time for defining future cognitive potential. Therefore, when fetal brain development is impaired, as it is in many disorders including congenital heart disease (CHD), abnormalities emerge in utero and contribute to lifelong cognitive impairment that cannot be corrected even with optimal postnatal care. This has led to an overwhelming public health need for methods that detect early in utero anatomical and physiological abnormalities to better counsel parents and to better guide development and optimization of fetal interventions (surgical or medical) to prevent or mitigate such long-term consequences. Although there has been ongoing optimism that fetal MRI could fulfill this role, it still remains severely limited by the unique anatomy of the gravid abdomen, the small size of the fetus and, most importantly, fetal motion. As a result, fetal brain MRI lags far behind postnatal brain imaging. In fact, fetal brain MR evaluations remain primarily limited to fast single-shot T2 sequences that have inherently poor brain contrast with spectroscopy, diffusion and perfusion unreliable or impossible with the current methods. Thus, the potential of fetal MRI to provide robust and accurate structural and physiological assessments remains unrealized. We propose to advance fetal MRI using an integrated approach that addresses the entire imaging acquisition process from hardware to pulse sequence design with the following aims: Aim 1. Develop MR Hardware and Anatomical Acquisition Methods. We propose to develop the first anthropomorphic fetal MRI phantom to safely test the feasibility of our developments and ensure SAR safety. We will build the first 128-channel receive phased array for the pregnant abdomen to facilitate image acceleration and improve SNR. We will build on the emerging field of parallel transmission (pTx), and be the first to apply it to fetal imaging with the goal of exciting only th region of the fetal head to minimize SAR, enable further acceleration, and provide a target for prospective motion navigation. Additional speed on the image acquisition will be gained with the development of compressed sensing (CS) techniques for fetal imaging. These improvements will enable improved anatomical images (TSE and MPRAGE); Aim 2. Develop Physiological Acquisition Methods. Use advances in Aim 1 to develop robust diffusion, spectroscopy and perfusion imaging; and Aim 3. Translate to In Vivo Fetal Brain MRI assessment in Congenital Heart Disease. We will assess the ability or our advances to better detect structural and physiological brain abnormalities in CHD compared to current fetal MRI in the same subjects and compared to the advanced protocol in normal controls. In addition we will attempt to detect physiological changes after fetal interventions in hypoplastic left heart syndrome (HLHS). In summary, our goal is to transform the field of fetal MRI by developing and employing state-of-the-art advances on the acquisition end of the fetal MRI experiment to meet the growing demand for more information as fetal interventions emerge.
描述(由申请人提供):胎儿时期是一个无与伦比的大脑生长和发育的时期,可以说是定义未来认知潜力的最重要时间。因此,当胎儿脑发育受到损害时,就像在许多疾病中,包括先天性心脏病(CHD),子宫内出现异常,并导致终身认知障碍,即使在最佳的后护理中也无法纠正。这导致了对公共卫生的压倒性公共卫生需求,这些方法在子宫解剖学和生理异常中检测到早期的方法,以更好地为父母提供建议,并更好地指导胎儿干预(手术或医疗)的发展和优化,以预防或减轻这种长期后果。尽管持续的乐观表明胎儿MRI可以履行这一角色,但它仍然受到腹部腹部独特的解剖结构的严重限制,胎儿的尺寸很小,最重要的是胎儿运动。结果,胎儿脑MRI远远落后于产后脑成像。实际上,胎儿脑MR评估主要仅限于快速的单发T2序列,这些T2序列与光谱,扩散和灌注不可靠或不可能或不可能与当前方法对比固有鲜明对比。因此,胎儿MRI提供可靠,准确的结构和生理评估的潜力仍然未实现。我们建议使用一种集成的方法来推进胎儿MRI,该方法通过以下目的来解决整个成像采集过程从硬件到脉冲序列设计:AIM 1。开发MR硬件和解剖学采集方法。我们建议开发第一个拟人化胎儿MRI幻影,以安全地测试我们的发展的可行性并确保SAR安全性。我们将建造第一个128通道接收孕妇腹部的分阶段阵列,以促进图像加速并改善SNR。我们将建立在平行传输(PTX)的新兴领域,并成为第一个将其应用于胎儿成像的人,其目标是仅激发胎儿头部的TH区域以最小化SAR,实现进一步的加速,并为前瞻性运动导航提供了目标。随着用于胎儿成像的压缩传感(CS)技术的发展,将获得图像采集的额外速度。这些改进将实现改进的解剖图像(TSE和MPRAGE);目的2。开发生理学方法。使用目标1的进步来发展稳健的扩散,光谱和灌注成像;目标3。转化为先天性心脏病中体内胎儿脑MRI评估。我们将评估与当前受试者的当前胎儿MRI相比,与当前的胎儿MRI相比,与正常对照中的高级方案相比,冠心病的结构和生理脑异常的能力或进步。此外,我们将尝试检测胎儿干预左心脏综合征(HLHS)后的生理变化。总而言之,我们的目标是通过开发和采用最先进的进步来改变胎儿MRI的领域,随着胎儿干预的出现,胎儿MRI实验的获取末端满足了对更多信息的不断增长的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(6)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELFAR ADALSTEINSSON其他文献
ELFAR ADALSTEINSSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELFAR ADALSTEINSSON', 18)}}的其他基金
Fetal MRI: robust self-driving brain acquisition and body movement quantification
胎儿 MRI:强大的自动驾驶大脑采集和身体运动量化
- 批准号:
10390574 - 财政年份:2022
- 资助金额:
$ 128.3万 - 项目类别:
Fetal MRI: robust self-driving brain acquisition and body movement quantification
胎儿 MRI:强大的自动驾驶大脑采集和身体运动量化
- 批准号:
10555202 - 财政年份:2022
- 资助金额:
$ 128.3万 - 项目类别:
Novel MRI Assessment of Placental Structure and Function Throughout Pregnancy
妊娠期胎盘结构和功能的新型 MRI 评估
- 批准号:
10397424 - 财政年份:2019
- 资助金额:
$ 128.3万 - 项目类别:
Novel MRI Assessment of Placental Structure and Function Throughout Pregnancy
妊娠期胎盘结构和功能的新型 MRI 评估
- 批准号:
10619529 - 财政年份:2019
- 资助金额:
$ 128.3万 - 项目类别:
Novel MRI Assessment of Placental Structure and Function Throughout Pregnancy
妊娠期胎盘结构和功能的新型 MRI 评估
- 批准号:
10004704 - 财政年份:2019
- 资助金额:
$ 128.3万 - 项目类别:
Novel MRI Assessment of Placental Structure and Function Throughout Pregnancy
妊娠期胎盘结构和功能的新型 MRI 评估
- 批准号:
10163065 - 财政年份:2019
- 资助金额:
$ 128.3万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Calorie Restriction and Hallmarks of Aging in Drosophila
果蝇的热量限制和衰老标志
- 批准号:
10901041 - 财政年份:2023
- 资助金额:
$ 128.3万 - 项目类别:
Liquid biopsy and radiomics for liver cancer surveillance
用于肝癌监测的液体活检和放射组学
- 批准号:
10736720 - 财政年份:2023
- 资助金额:
$ 128.3万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 128.3万 - 项目类别:
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10584507 - 财政年份:2022
- 资助金额:
$ 128.3万 - 项目类别: