Advanced Fetal Imaging
先进的胎儿成像
基本信息
- 批准号:8696352
- 负责人:
- 金额:$ 128.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAccelerationAddressAnatomyBirthBrainBrain imagingCerebrumCognitiveComputer softwareContrast MediaCounselingCustomDOTMADetectionDevelopmentDiagnosticDiffusionDiseaseEnsureEvaluationFeedbackFetal DevelopmentFetal MovementFetusFutureGoalsGrowth and Development functionHeadHeatingHereditary DiseaseHypoplastic Left Heart SyndromeImageImaging PhantomsImpaired cognitionInterventionLeadLifeMagnetic Resonance ImagingMeasurementMedicalMethodsMotionNeonatalNeuronsOperative Surgical ProceduresParentsPatient currently pregnantPerformancePerfusionPersonsPhasePhysiologic pulsePhysiologicalPhysiologyPositioning AttributePostnatal CareProcessProtocols documentationPublic HealthResolutionRoleSafetySpectrum AnalysisSpeedStructureTechniquesTemperatureTestingTimeTissuesTranslatingTransposition of Great VesselsValidationcongenital heart disorderdesigndisease diagnosisdisorder controlelectrical propertyfetalfetal medicinefollow-upimaging modalityimprovedin uteroin vivomeetingsmotion sensitivitymyelinationneuroimagingoptimismoutcome forecastpost interventionpostnatalpregnantpreventprospectivepublic health relevanceresearch studyresponsescreeningsynaptogenesistooltransmission process
项目摘要
DESCRIPTION (provided by applicant): The fetal period is a time of unparalleled brain growth and development and is arguably the most important time for defining future cognitive potential. Therefore, when fetal brain development is impaired, as it is in many disorders including congenital heart disease (CHD), abnormalities emerge in utero and contribute to lifelong cognitive impairment that cannot be corrected even with optimal postnatal care. This has led to an overwhelming public health need for methods that detect early in utero anatomical and physiological abnormalities to better counsel parents and to better guide development and optimization of fetal interventions (surgical or medical) to prevent or mitigate such long-term consequences. Although there has been ongoing optimism that fetal MRI could fulfill this role, it still remains severely limited by the unique anatomy of the gravid abdomen, the small size of the fetus and, most importantly, fetal motion. As a result, fetal brain MRI lags far behind postnatal brain imaging. In fact, fetal brain MR evaluations remain primarily limited to fast single-shot T2 sequences that have inherently poor brain contrast with spectroscopy, diffusion and perfusion unreliable or impossible with the current methods. Thus, the potential of fetal MRI to provide robust and accurate structural and physiological assessments remains unrealized. We propose to advance fetal MRI using an integrated approach that addresses the entire imaging acquisition process from hardware to pulse sequence design with the following aims: Aim 1. Develop MR Hardware and Anatomical Acquisition Methods. We propose to develop the first anthropomorphic fetal MRI phantom to safely test the feasibility of our developments and ensure SAR safety. We will build the first 128-channel receive phased array for the pregnant abdomen to facilitate image acceleration and improve SNR. We will build on the emerging field of parallel transmission (pTx), and be the first to apply it to fetal imaging with the goal of exciting only th region of the fetal head to minimize SAR, enable further acceleration, and provide a target for prospective motion navigation. Additional speed on the image acquisition will be gained with the development of compressed sensing (CS) techniques for fetal imaging. These improvements will enable improved anatomical images (TSE and MPRAGE); Aim 2. Develop Physiological Acquisition Methods. Use advances in Aim 1 to develop robust diffusion, spectroscopy and perfusion imaging; and Aim 3. Translate to In Vivo Fetal Brain MRI assessment in Congenital Heart Disease. We will assess the ability or our advances to better detect structural and physiological brain abnormalities in CHD compared to current fetal MRI in the same subjects and compared to the advanced protocol in normal controls. In addition we will attempt to detect physiological changes after fetal interventions in hypoplastic left heart syndrome (HLHS). In summary, our goal is to transform the field of fetal MRI by developing and employing state-of-the-art advances on the acquisition end of the fetal MRI experiment to meet the growing demand for more information as fetal interventions emerge.
描述(由申请人提供):胎儿期是大脑无与伦比的生长和发育的时期,并且可以说是定义未来认知潜力的最重要时期。因此,当胎儿大脑发育受损时,就像先天性心脏病 (CHD) 等许多疾病一样,子宫内就会出现异常,并导致终生认知障碍,即使采用最佳的产后护理也无法纠正。这导致公众健康迫切需要在子宫内早期检测解剖和生理异常的方法,以便更好地为父母提供建议,并更好地指导胎儿干预措施(手术或医疗)的开发和优化,以预防或减轻此类长期后果。尽管人们一直乐观地认为胎儿 MRI 可以发挥这一作用,但它仍然受到妊娠腹部独特的解剖结构、胎儿的小尺寸以及最重要的胎儿运动的严重限制。因此,胎儿脑部 MRI 远远落后于产后脑部成像。事实上,胎儿大脑 MR 评估仍然主要限于快速单次 T2 序列,这些序列本身具有较差的大脑对比度,而光谱、扩散和灌注在当前方法中不可靠或不可能。因此,胎儿 MRI 提供稳健且准确的结构和生理评估的潜力仍未实现。我们建议使用集成方法来推进胎儿 MRI,该方法解决从硬件到脉冲序列设计的整个成像采集过程,目标如下: 目标 1. 开发 MR 硬件和解剖采集方法。我们建议开发第一个拟人化胎儿 MRI 体模,以安全地测试我们开发的可行性并确保 SAR 安全。我们将为孕妇腹部构建第一个128通道接收相控阵,以促进图像加速并提高信噪比。我们将在新兴的并行传输 (pTx) 领域的基础上,率先将其应用于胎儿成像,目标是仅激励胎儿头部的某个区域,以最大限度地减少 SAR,实现进一步加速,并为未来的研究提供目标。运动导航。随着胎儿成像压缩传感 (CS) 技术的发展,图像采集速度将进一步提高。这些改进将改善解剖图像(TSE 和 MPRAGE);目标 2. 开发生理采集方法。利用目标 1 的进展开发强大的扩散、光谱和灌注成像;目标 3. 转化为先天性心脏病的体内胎儿脑 MRI 评估。我们将评估与当前胎儿 MRI 相比,以及与正常对照中的先进方案相比,更好地检测 CHD 中的结构和生理性大脑异常的能力或进展。此外,我们将尝试检测胎儿左心发育不全综合征(HLHS)干预后的生理变化。总之,我们的目标是通过开发和采用胎儿 MRI 实验采集端的最先进技术来改变胎儿 MRI 领域,以满足随着胎儿干预措施的出现对更多信息不断增长的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(6)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELFAR ADALSTEINSSON其他文献
ELFAR ADALSTEINSSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELFAR ADALSTEINSSON', 18)}}的其他基金
Fetal MRI: robust self-driving brain acquisition and body movement quantification
胎儿 MRI:强大的自动驾驶大脑采集和身体运动量化
- 批准号:
10390574 - 财政年份:2022
- 资助金额:
$ 128.3万 - 项目类别:
Fetal MRI: robust self-driving brain acquisition and body movement quantification
胎儿 MRI:强大的自动驾驶大脑采集和身体运动量化
- 批准号:
10555202 - 财政年份:2022
- 资助金额:
$ 128.3万 - 项目类别:
Novel MRI Assessment of Placental Structure and Function Throughout Pregnancy
妊娠期胎盘结构和功能的新型 MRI 评估
- 批准号:
10397424 - 财政年份:2019
- 资助金额:
$ 128.3万 - 项目类别:
Novel MRI Assessment of Placental Structure and Function Throughout Pregnancy
妊娠期胎盘结构和功能的新型 MRI 评估
- 批准号:
10619529 - 财政年份:2019
- 资助金额:
$ 128.3万 - 项目类别:
Novel MRI Assessment of Placental Structure and Function Throughout Pregnancy
妊娠期胎盘结构和功能的新型 MRI 评估
- 批准号:
10004704 - 财政年份:2019
- 资助金额:
$ 128.3万 - 项目类别:
Novel MRI Assessment of Placental Structure and Function Throughout Pregnancy
妊娠期胎盘结构和功能的新型 MRI 评估
- 批准号:
10163065 - 财政年份:2019
- 资助金额:
$ 128.3万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于非线性模态局部化加速度传感器的自适应混沌控制研究
- 批准号:12302016
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Calorie Restriction and Hallmarks of Aging in Drosophila
果蝇的热量限制和衰老标志
- 批准号:
10901041 - 财政年份:2023
- 资助金额:
$ 128.3万 - 项目类别:
Liquid biopsy and radiomics for liver cancer surveillance
用于肝癌监测的液体活检和放射组学
- 批准号:
10736720 - 财政年份:2023
- 资助金额:
$ 128.3万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 128.3万 - 项目类别:
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10584507 - 财政年份:2022
- 资助金额:
$ 128.3万 - 项目类别: