Cellular Mechanisms of Auditory Information Processing

听觉信息处理的细胞机制

基本信息

  • 批准号:
    8837092
  • 负责人:
  • 金额:
    $ 37.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Neurons and neural circuits in the cochlear nuclei are on the front line of auditory information processing. The CN receives a stereotyped representation of sound in the form of spike trains from the auditory nerve (AN), and produces highly modified parallel representations that drive the ascending auditory pathways. Traditionally, the cochlear nuclei are viewed as consisting of three major regions containing distinct populations of projection neurons that each emphasize different aspects of information about the acoustic environment in a parallel, but largely independent, fashion. However, coordinated spiking between output pathways can aid in the reconstruction of auditory objects and the detection of signals in noise by providing temporal cues that contribute to integration in higher auditory neurons. Our overarching hypothesis is that the relative spike timing between these pathways is coordinated not only by features in the acoustic stimulus, but importantly by shared local excitatory and inhibitory circuits, implying that the pathways are not independent. Coordinated activity may aid in the reconstruction of auditory objects and the detection of signals in noise by providing temporal coherence of activity across cells that can be integrated when these pathways converge onto higher auditory neurons. Yet, how the local circuits contribute to processing and their connectivity with other cells in the cochlear nuclei are only partially understood. In this proposal, we address how the output pathways of the cochlear nuclei can be coordinated through local circuits. The first stage of the work takes place in the context of normal hearing, and examines hypotheses about the functional synaptic connectivity of three cell types in the cochlear nuclei with the principal neurons and with each other, using optogenetic techniques and targeted patch clamp recording in brain slices form mice. The second stage incorporates the spatial structure of these circuits and the temporal dynamics of their synapses into a network model to evaluate how the activity between and within the output pathways is structured by the local circuits. We will then test predictions from the model with in vivo single unit studies. The finals stage considers the effects of a high-frequency noise-induced hearing loss on the functional organization of the CN circuit to determine how excitatory and inhibitory balance is altered. The rationale of the proposed research is that the successful restoration of function with cochlear implants or hearing aids depends on the ability to optimally engage the functional network architecture of the cochlear nucleus, which in turn requires an understanding of how information is integrated in the cochlear nuclei and how the output activity is coordinated by the local networks.
描述(由申请人提供):耳蜗核中的神经元和神经回路处于听觉信息处理的最前线。 CN 从听觉神经 (AN) 接收尖峰序列形式的声音刻板表征,并产生高度修改的并行表征,驱动上行听觉通路。传统上,耳蜗核被视为由三个主要区域组成,其中包含不同的投射神经元群,每个区域以平行但基本上独立的方式强调有关声学环境的信息的不同方面。然而,输出通路之间的协调尖峰可以通过提供有助于高级听觉神经元整合的时间线索来帮助听觉对象的重建和噪声中信号的检测。我们的总体假设是,这些通路之间的相对尖峰时间不仅通过声刺激的特征来协调,而且重要的是通过共享的局部兴奋和抑制电路来协调,这意味着这些通路不是独立的。协调的活动可以通过提供跨细胞活动的时间一致性来帮助听觉对象的重建和噪声中信号的检测,当这些通路汇聚到更高的听觉神经元时,这些活动可以被整合。然而,局部电路如何促进处理以及它们与耳蜗核中其他细胞的连接仅得到部分了解。在该提案中,我们讨论了如何通过局部电路协调耳蜗核团的输出路径。该工作的第一阶段在正常听力的背景下进行,并使用光遗传学技术和大脑中的靶向膜片钳记录,检查有关耳蜗核中三种细胞类型与主要神经元以及彼此之间功能性突触连接的假设切片形成小鼠。第二阶段将这些电路的空间结构及其突触的时间动态纳入网络模型中,以评估输出路径之间和内部的活动如何由局部电路构建。然后,我们将通过体内单个单元研究来测试模型的预测。决赛阶段考虑高频噪声引起的听力损失对中枢神经回路功能组织的影响,以确定兴奋性和抑制性平衡如何改变。该研究的基本原理是,人工耳蜗或助听器功能的成功恢复取决于最佳地参与耳蜗核功能网络架构的能力,而这反过来又需要了解信息如何整合到耳蜗核中以及本地网络如何协调输出活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul B Manis其他文献

Paul B Manis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul B Manis', 18)}}的其他基金

Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
  • 批准号:
    10188497
  • 财政年份:
    2020
  • 资助金额:
    $ 37.35万
  • 项目类别:
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
  • 批准号:
    10623261
  • 财政年份:
    2020
  • 资助金额:
    $ 37.35万
  • 项目类别:
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
  • 批准号:
    10399541
  • 财政年份:
    2020
  • 资助金额:
    $ 37.35万
  • 项目类别:
Auditory Cortex: Synaptic organization and plasticity
听觉皮层:突触组织和可塑性
  • 批准号:
    8415558
  • 财政年份:
    2011
  • 资助金额:
    $ 37.35万
  • 项目类别:
Auditory Cortex: Synaptic organization and plasticity
听觉皮层:突触组织和可塑性
  • 批准号:
    8231989
  • 财政年份:
    2011
  • 资助金额:
    $ 37.35万
  • 项目类别:
Auditory Cortex: Synaptic organization and plasticity
听觉皮层:突触组织和可塑性
  • 批准号:
    8108462
  • 财政年份:
    2011
  • 资助金额:
    $ 37.35万
  • 项目类别:
Physiology of Dorsal Cochlear Nucleus Molecular Layer
耳蜗背核分子层的生理学
  • 批准号:
    7854098
  • 财政年份:
    2009
  • 资助金额:
    $ 37.35万
  • 项目类别:
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
  • 批准号:
    7850212
  • 财政年份:
    2009
  • 资助金额:
    $ 37.35万
  • 项目类别:
Research Training in Otolaryngology
耳鼻喉科研究培训
  • 批准号:
    6592933
  • 财政年份:
    2003
  • 资助金额:
    $ 37.35万
  • 项目类别:
Research Training in Otolaryngology
耳鼻喉科研究培训
  • 批准号:
    8829222
  • 财政年份:
    2003
  • 资助金额:
    $ 37.35万
  • 项目类别:

相似国自然基金

鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
  • 批准号:
    62301355
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
  • 批准号:
    12304486
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
  • 批准号:
    12304492
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
  • 批准号:
    82302198
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
  • 批准号:
    12371422
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
  • 批准号:
    10760827
  • 财政年份:
    2023
  • 资助金额:
    $ 37.35万
  • 项目类别:
Subcortical and Cortical Responses in Infants Evoked by Running Speech
婴儿跑步言语引起的皮质下和皮质反应
  • 批准号:
    10373228
  • 财政年份:
    2022
  • 资助金额:
    $ 37.35万
  • 项目类别:
Subcortical and Cortical Responses in Infants Evoked by Running Speech
婴儿跑步言语引起的皮质下和皮质反应
  • 批准号:
    10598552
  • 财政年份:
    2022
  • 资助金额:
    $ 37.35万
  • 项目类别:
Neural Signatures of Enhanced Central Auditory Gain in Hyperacusis
听觉过敏中枢听觉增益增强的神经特征
  • 批准号:
    10285833
  • 财政年份:
    2021
  • 资助金额:
    $ 37.35万
  • 项目类别:
Supplement: Active and Nonlinear Models for Cochlear Mechanics
补充:耳蜗力学的主动和非线性模型
  • 批准号:
    10405710
  • 财政年份:
    2021
  • 资助金额:
    $ 37.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了