Auditory Cortex: Synaptic organization and plasticity
听觉皮层:突触组织和可塑性
基本信息
- 批准号:8415558
- 负责人:
- 金额:$ 35.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-03-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAction PotentialsAffectAnisotropyAreaAuditory PerceptionAuditory areaBackBasal Nucleus of MeynertBiological Neural NetworksBrainCalciumCalcium SignalingCellsCholinergic ReceptorsCochlear ImplantsComputer ArchitecturesDataDendritesDiscriminationEnvironmentEquilibriumExhibitsExposure toFoundationsFrequenciesGoalsHearingHearing AidsHigh-Frequency Hearing LossLateralLeadLearningLifeMapsMeasuresMusMuscarinic Acetylcholine ReceptorNeuronsNoiseNoise-Induced Hearing LossOptical MethodsOrganOutcomes ResearchPotassium ChannelPreparationProcessPyramidal CellsReceptor ActivationReportingResearchResidual stateSelf-Help DevicesSensorySensory ProcessShapesSliceSourceStagingSynapsesSynaptic plasticitySystemTestingThalamic structureTimeTinnitusVoltage-Gated Potassium Channelbasal forebrainbasecholinergicclassical conditioningfunctional restorationhearing impairmenthippocampal pyramidal neuronin vivoinsightneuromechanismprogramspublic health relevancerelating to nervous systemresearch studyresponserestorationsensory systemsound
项目摘要
DESCRIPTION (provided by applicant): Sensory systems perform adaptive processing of the sensory environment on a moment-to- moment basis. In the cortex, adaptive processing develops the basic network, optimizes sensory learning for specific perceptual tasks, and supports compensatory responses to long- term changes in sensory input. Cortical plasticity depends on the organization of intracortical circuits as well as the intrinsic plasticity of local microcircuits. In this proposal, we will explore local circuit organization within and orthogonal to the tonotopic axes of the primary auditory cortex, the mechanisms regulating synaptic plasticity in those circuits, and the effects of hearing loss on circuit organization and synaptic plasticity. In the first aim, we will test the hypothesis that the organization of synaptic connections in L2/3 in primary auditory cortex is anisotropic with respect to the tonotopic axes, and we will compare the strength and organization of the supragranular input to L4 neurons with that from layers 5 and 6. We will measure the tonotopic map, then use a thalamocortical brain slice preparation to dissect the responses of morphologically identified neurons in physiologically defined regions to thalamic stimulation and to local intracortical stimulation, using a combination of electrophysiological and optical methods. In the second aim, we will examine cellular mechanisms that regulate a key trigger of synaptic plasticity, action potential back-propagation, in dendrites of L4 and L2/3 neurons. Stimulation of basal forebrain cholinergic systems has been shown to enhance map plasticity in vivo, and we find that activation of cholinergic receptors in auditory cortex affects spike timing-dependent plasticity. We will test the hypotheses that dendritic potassium channels regulate calcium signaling produced by back-propagating action potentials in dendrites, and that these channels are in turn regulated by muscarinic receptor activation. In the third aim we will test the hypothesis that noise-induced hearing loss increases synaptic connectivity between L2/3 pyramidal neurons in the normal-hearing region and the hearing- loss region, and that the hearing loss also decreases synaptic plasticity. Our experiments are aimed at identifying key circuits and cellular mechanisms that support adaptive processing functions at the initial stages of cortical processing, and to understand how those mechanisms respond to hearing loss.
描述(由申请人提供):感觉系统即时地执行感觉环境的自适应处理。在皮层中,自适应处理开发了基本网络,优化了特定感知任务的感觉学习,并支持对感觉输入的长期变化的补偿反应。皮质可塑性取决于皮质内电路的组织以及局部微电路的内在可塑性。在本提案中,我们将探索初级听觉皮层音位轴内并与其正交的局部回路组织、调节这些回路中突触可塑性的机制,以及听力损失对回路组织和突触可塑性的影响。在第一个目标中,我们将测试初级听觉皮层 L2/3 中突触连接的组织相对于音位轴是各向异性的假设,并且我们将与 L4 神经元的颗粒上输入的强度和组织进行比较来自第 5 层和第 6 层。我们将测量音调图,然后使用丘脑皮质脑切片制剂来剖析生理定义区域中形态学上识别的神经元对丘脑刺激的反应,结合电生理学和光学方法进行局部皮质内刺激。在第二个目标中,我们将研究调节 L4 和 L2/3 神经元树突中突触可塑性、动作电位反向传播的关键触发因素的细胞机制。刺激基底前脑胆碱能系统已被证明可以增强体内图谱可塑性,我们发现听觉皮层胆碱能受体的激活会影响尖峰时间依赖性可塑性。我们将测试以下假设:树突状钾通道调节树突中反向传播动作电位产生的钙信号传导,并且这些通道反过来又受到毒蕈碱受体激活的调节。在第三个目标中,我们将检验以下假设:噪声引起的听力损失会增加正常听力区域和听力损失区域的 L2/3 锥体神经元之间的突触连接,并且听力损失也会降低突触可塑性。我们的实验旨在确定在皮质处理初始阶段支持自适应处理功能的关键电路和细胞机制,并了解这些机制如何应对听力损失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul B Manis其他文献
Paul B Manis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul B Manis', 18)}}的其他基金
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
- 批准号:
10188497 - 财政年份:2020
- 资助金额:
$ 35.46万 - 项目类别:
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
- 批准号:
10623261 - 财政年份:2020
- 资助金额:
$ 35.46万 - 项目类别:
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
- 批准号:
10399541 - 财政年份:2020
- 资助金额:
$ 35.46万 - 项目类别:
Auditory Cortex: Synaptic organization and plasticity
听觉皮层:突触组织和可塑性
- 批准号:
8231989 - 财政年份:2011
- 资助金额:
$ 35.46万 - 项目类别:
Auditory Cortex: Synaptic organization and plasticity
听觉皮层:突触组织和可塑性
- 批准号:
8108462 - 财政年份:2011
- 资助金额:
$ 35.46万 - 项目类别:
Physiology of Dorsal Cochlear Nucleus Molecular Layer
耳蜗背核分子层的生理学
- 批准号:
7854098 - 财政年份:2009
- 资助金额:
$ 35.46万 - 项目类别:
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
- 批准号:
7850212 - 财政年份:2009
- 资助金额:
$ 35.46万 - 项目类别:
相似国自然基金
泛素E3连接酶接头蛋白SPOP控制离子通道KCNQ1蛋白稳定性影响心肌细胞复极化的机制研究
- 批准号:81800301
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
磁场对神经元动作电位产生与传导的影响
- 批准号:51507046
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
钙钟和膜钟对窦房结自律性的影响及与房性心律失常相互作用的机制
- 批准号:81271661
- 批准年份:2012
- 资助金额:69.0 万元
- 项目类别:面上项目
心脏再同步化治疗对失同步化心衰左心室电生理重构的影响
- 批准号:81100126
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
L型钙离子通道的不同亚型在生理状态和尼古丁成瘾状态下对于腹侧被盖区多巴胺细胞放电行为的影响及其机制
- 批准号:31000483
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Peripheral and central contributions to auditory temporal processing deficits and speech understanding in older cochlear implantees
外周和中枢对老年人工耳蜗植入者听觉时间处理缺陷和言语理解的贡献
- 批准号:
10444172 - 财政年份:2022
- 资助金额:
$ 35.46万 - 项目类别:
Peripheral and central contributions to auditory temporal processing deficits and speech understanding in older cochlear implantees
外周和中枢对老年人工耳蜗植入者听觉时间处理缺陷和言语理解的贡献
- 批准号:
10630111 - 财政年份:2022
- 资助金额:
$ 35.46万 - 项目类别:
Optimizing cochlear implants for music perception
优化人工耳蜗的音乐感知
- 批准号:
10544724 - 财政年份:2021
- 资助金额:
$ 35.46万 - 项目类别:
Optimizing cochlear implants for music perception
优化人工耳蜗的音乐感知
- 批准号:
10463082 - 财政年份:2021
- 资助金额:
$ 35.46万 - 项目类别:
Toward wearable ultrasonic neurostimulation for daily at-home treatment of urinary urge incontinence
用于日常家庭治疗急迫性尿失禁的可穿戴超声神经刺激
- 批准号:
10363621 - 财政年份:2020
- 资助金额:
$ 35.46万 - 项目类别: