Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
基本信息
- 批准号:10399541
- 负责人:
- 金额:$ 49.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Acoustic NerveAcousticsAdolescentAdultAffectAgeAgingAmericanAnimalsAuditoryAuditory systemAxonBilateralBrainCell NucleusCellsCochleaCochlear nucleusCodeCognitionCommunicationComplexComputer ModelsDendritesDetectionDevelopmentDorsalEnvironmentEnvironmental Risk FactorEtiologyExposure toFiberFrequenciesFunctional disorderGeneticGoalsHair CellsHearing problemHumanHyperacusisIndividualInfectionInterneuronsIon ChannelIonsKnowledgeLiteratureLoudnessMapsMasksMeasuresModelingMolecularMusNerve FibersNeuraxisNeuronsNoiseNoise-Induced Hearing LossOccupationalOutputPathway interactionsPatternPerceptionPeripheralPersonsPharmacotherapyPopulationPovertyProcessPyramidal CellsRattusResidual stateSensorySensory ThresholdsSignal TransductionSliceSocial isolationSpeechSpeech DiscriminationSynapsesSynaptic TransmissionTestingTrainingUnited StatesWorkauditory processingcancer therapycell typedorsal cochlear nucleusganglion cellhearing impairmenthippocampal pyramidal neuronin vivoinformation processinginsightjuvenile animalmature animalnerve supplyneural circuitnovelprogramsreceptorresponsesensory discriminationsensory inputsensory integrationsoundspiral ganglionstellate cellstimulus processingsynaptic functionvirtual
项目摘要
Hearing loss is a pervasive problem that can result from exposure to loud sounds, to drugs for treatment
of cancer and infections, from aging, or from individual genetic factors. Noise-induce hearing loss (NIHL),
from both occupational and recreational causes, is a growing issue that is currently is thought to affect
more than 40 million Americans. Nearly 25% of adults have audiological signs consistent with causation
by NIHL. Hearing loss leads to difficulties in communication, social isolation, and possibly to changes in
cognition. Most causes of hearing loss are caused by dysfunctional changes in the cochlea and spiral
ganglion cells, which in turn provided a degraded sensory representation to the cochlear nucleus (CN)
where the axons of spiral ganglion cells, the auditory nerve fibers (ANFs), terminate. The consequences
of cochlear NIHL then propagate throughout the central auditory system, engaging pathophysiological
increases in excitability and altering synaptic function. The CN consists of networks of neurons with distinct
patterns of synaptic innervation from ANFs, and these neurons create parallel, yet intertwined, pathways
for upstream analysis. Although sensory processing in the CN has been well studied in animals with normal
cochleae, how the mechanisms and functions of CN circuits change after hearing loss, and the
consequences of those changes for sensory processing, is not as well understood. Many cellular
mechanisms have only been studied in juvenile mice during a developmental sensitive period. There is an
unmet need to understand the unique cellular mechanisms underlying NIHL that occur in adults. Here, we
propose to use controlled NIHL to perturb the ANF inputs to the CN, and then to examine specific synapses
and cellular excitability mechanisms related to sensory processing in noisy environments in the CN. First,
we will examine the hypothesis that NIHL leads to increased excitability of three specific populations of CN
neurons, two of which have not been studied, and one that has only been studied in very young animals,
in brain slices in adult mice. We will determine which specific mechanisms and ion channels are causal to
changes in excitability. Second, we will examine how the synaptic inputs to different neurons of the CN are
affected by NIHL, testing the hypotheses that NIHL induces mechanisms that amplify residual dendritic
excitatory synaptic inputs, and alter the functional organization and strength of inhibition at specific local
connections. Third, we will examine how the detection of sounds in noise is affected by NIHL in these three
populations of CN neurons, using an established acoustic paradigm, in both computational models and in
vivo. Together the results from these studies will provide insights into how the early stage processing of
sound is affected by hearing loss, and can contribute identifying approaches to optimize sensory
discrimination after hearing loss.
听力损失是一个普遍存在的问题,可能因暴露于大声的声音或治疗药物而导致
癌症和感染、衰老或个体遗传因素。噪音引起的听力损失(NIHL),
由于职业和娱乐原因,这是一个日益严重的问题,目前被认为影响
超过 4000 万美国人。近 25% 的成年人有与因果关系一致的听力学体征
由 NIHL 提供。听力损失会导致沟通困难、社交孤立,并可能导致生活习惯的改变
认识。听力损失的大多数原因是由耳蜗和螺旋的功能失调变化引起的
神经节细胞,进而向耳蜗核提供退化的感觉表征 (CN)
螺旋神经节细胞的轴突(听觉神经纤维(ANF))终止于此。后果
然后耳蜗 NIHL 的信号传播到整个中枢听觉系统,参与病理生理学
兴奋性增加并改变突触功能。 CN 由具有不同特征的神经元网络组成
ANF 的突触神经支配模式,这些神经元创建平行但相互交织的路径
用于上游分析。尽管中枢神经系统的感觉处理已在具有正常功能的动物身上进行了充分研究
耳蜗,听力损失后 CN 回路的机制和功能如何变化,以及
这些变化对感觉处理的影响还没有得到很好的理解。许多蜂窝
仅在发育敏感期的幼年小鼠中研究了其机制。有一个
了解成人 NIHL 背后独特的细胞机制的需求尚未得到满足。在这里,我们
建议使用受控 NIHL 扰乱 ANF 对 CN 的输入,然后检查特定突触
以及与中枢神经系统噪声环境中的感觉处理相关的细胞兴奋机制。第一的,
我们将检验 NIHL 导致三个特定 CN 群体兴奋性增加的假设
神经元,其中两种尚未被研究,另一种仅在非常年幼的动物中进行过研究,
在成年小鼠的脑切片中。我们将确定哪些具体机制和离子通道导致
兴奋性的变化。其次,我们将研究 CN 不同神经元的突触输入是如何的
受 NIHL 影响,检验 NIHL 诱导放大残余树突的机制的假设
兴奋性突触输入,并改变特定局部的功能组织和抑制强度
连接。第三,我们将研究这三个方面的 NIHL 如何影响噪声中声音的检测
CN 神经元群体,使用已建立的声学范式,在计算模型和
体内。这些研究的结果将提供关于早期处理如何进行的见解。
声音会受到听力损失的影响,并且有助于识别优化感官的方法
听力损失后的歧视。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul B Manis其他文献
Paul B Manis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul B Manis', 18)}}的其他基金
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
- 批准号:
10188497 - 财政年份:2020
- 资助金额:
$ 49.5万 - 项目类别:
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
- 批准号:
10623261 - 财政年份:2020
- 资助金额:
$ 49.5万 - 项目类别:
Auditory Cortex: Synaptic organization and plasticity
听觉皮层:突触组织和可塑性
- 批准号:
8415558 - 财政年份:2011
- 资助金额:
$ 49.5万 - 项目类别:
Auditory Cortex: Synaptic organization and plasticity
听觉皮层:突触组织和可塑性
- 批准号:
8231989 - 财政年份:2011
- 资助金额:
$ 49.5万 - 项目类别:
Auditory Cortex: Synaptic organization and plasticity
听觉皮层:突触组织和可塑性
- 批准号:
8108462 - 财政年份:2011
- 资助金额:
$ 49.5万 - 项目类别:
Physiology of Dorsal Cochlear Nucleus Molecular Layer
耳蜗背核分子层的生理学
- 批准号:
7854098 - 财政年份:2009
- 资助金额:
$ 49.5万 - 项目类别:
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
- 批准号:
7850212 - 财政年份:2009
- 资助金额:
$ 49.5万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
- 批准号:82302198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
- 批准号:12371422
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Neural and behavioral mechanisms of song learning in zebra finches
斑胸草雀鸣叫学习的神经和行为机制
- 批准号:
10678601 - 财政年份:2023
- 资助金额:
$ 49.5万 - 项目类别:
Ready to CONNECT: Conversation and Language in Autistic Teens
准备好联系:自闭症青少年的对话和语言
- 批准号:
10807563 - 财政年份:2023
- 资助金额:
$ 49.5万 - 项目类别:
Genetic rescue of a developmental hearing loss-induced spectral processing deficit
发育性听力损失引起的频谱处理缺陷的基因拯救
- 批准号:
10537264 - 财政年份:2022
- 资助金额:
$ 49.5万 - 项目类别:
Evaluation of a structure-function model for auditory consequences of impact acceleration brain injury and protection via the olivocochlear system
冲击加速脑损伤的听觉后果的结构功能模型评估以及通过橄榄耳蜗系统的保护
- 批准号:
10605573 - 财政年份:2022
- 资助金额:
$ 49.5万 - 项目类别:
Deciphering the neural mechanisms of music processing in the developing brain: A multi-feature and multi-cultural comparison
解读发育中大脑中音乐处理的神经机制:多特征和多文化比较
- 批准号:
10798728 - 财政年份:2022
- 资助金额:
$ 49.5万 - 项目类别: