Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
基本信息
- 批准号:8588924
- 负责人:
- 金额:$ 36.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-12-15 至 2015-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsBedsBiological ModelsBloodBlood specimenCalibrationCharacteristicsClinicalClinical DataColorectal CancerComputersDataData AnalysesDetectionDiagnosisEnvironmentEvaluationEvaluation StudiesFunctional ImagingGoalsHigh Performance ComputingHumanImageImaging DeviceInformation SystemsKineticsLeadLesionMeasurementMeasuresMetabolicMetastatic Neoplasm to the LiverMethodsMetricModelingMonitorMovementNatureNeoplasm MetastasisNoiseOutputPatientsPatternPerformancePhysiciansPositioning AttributePositron-Emission TomographyPrimary NeoplasmProceduresProcessPropertyProtocols documentationRadiopharmaceuticalsResolutionRunningScanningSensitivity and SpecificitySignal TransductionSimulateStagingStatistical ModelsSystemTimeTracerWeightWorkattenuationbasecancer diagnosisclinical applicationclinical practicecomputerized toolscostdisease diagnosishuman dataimaging modalityimprovedinterestmolecular imagingmultithreadingnovelnovel strategiesoncologypatient populationphysical modelresearch clinical testingtooltreatment planningtumoruptakewhole body imaging
项目摘要
DESCRIPTION (provided by applicant): Positron Emission tomography (PET) is a major molecular imaging tool in oncology, with applications ranging from diagnosis and staging to patient management. Despite the broad use of PET in the clinical environment, there is no quantitative PET imaging method available for routine clinical practice. The currently used static scan can provide a semi-quantitative measurement, standardized uptake value (SUV), for a whole body scan. However, it completely ignores the dynamic nature of radiopharmaceutical kinetics. The popular semi-quantitative dual time point method can approximate the kinetic differences at two time points by comparing activities but usually requires an extended waiting time for the second scan. The multiple time point method can calculate the net influx rate but still requires long scan duration and makes a whole body scan infeasible. The challenge of a quantitative whole body dynamic PET scan lies in how to estimate the quantitative functional values, such as net flux rate, using data from a short acquisition period, and how to accelerate the computation to make it practical in a clinical setting. We address this challenge by developing and optimizing a novel data analysis method and implementing it using a high performance computing tool. We take advantage of the linearity of Patlak graphic analysis to model the tracer activity in each voxel as a linear combination of the blood input function and its integral, weighted by the Patlak parameters including net influx rate. In addition, we derive a simplified model of the blood input function, based on the same assumptions used to derive Patlak parameters from the kinetic compartment model. We then estimate the Patlak parameters and the parameters in the blood input function in a penalized maximum likelihood estimation framework using the list mode data and its associated inhomogeneous Poisson statistical model. We also theoretically analyze the performance of our Patlak estimator in terms of noise, resolution and signal-to-noise ratio (SNR), and use the results to guide us in optimizing the scan duration and any movement of imaging bed to achieve the best SNR. The advanced estimation algorithm, along with an accurate imaging system model, can robustly compute the net influx rate using the list mode data in a short acquisition without a measured blood input function, and make whole body dynamic scans practical. Our algorithms will be implemented on an Nvidia Tesla GPU (graphics processing unit) based workstation, a new computing tool that provides computational power previously available only on a mini super computer. We will further accelerate our algorithms using a combination of efficient representation of the list mode data and the system matrix. We will evaluate the performance of the proposed method and compare it with SUV, the dual time point method, and the traditional Patlak method, using simulated and clinical data. We will use a range of performance metrics, including region of interest (ROI) bias, ROI variance, lesion detectability, and computer and human observers. This project will eventually provide a quantitative dynamic whole body PET imaging protocol that can potentially improve the sensitivity and specificity of PET imaging in oncology.
描述(由申请人提供):正电子发射断层扫描(PET)是肿瘤学中的主要分子成像工具,其应用范围从诊断和分期到患者管理。尽管 PET 在临床环境中得到广泛应用,但尚无定量 PET 成像方法可用于常规临床实践。目前使用的静态扫描可以为全身扫描提供半定量测量、标准化摄取值(SUV)。然而,它完全忽略了放射性药物动力学的动态性质。流行的半定量双时间点方法可以通过比较活性来近似两个时间点的动力学差异,但通常需要延长第二次扫描的等待时间。多时间点方法可以计算净流入率,但仍然需要较长的扫描持续时间,并且使得全身扫描不可行。定量全身动态 PET 扫描的挑战在于如何使用短采集周期的数据来估计定量功能值,例如净通量率,以及如何加速计算以使其在临床环境中实用。我们通过开发和优化一种新颖的数据分析方法并使用高性能计算工具来实施该方法来应对这一挑战。我们利用 Patlak 图形分析的线性将每个体素中的示踪剂活性建模为血液输入函数及其积分的线性组合,并由包括净流入率在内的 Patlak 参数进行加权。此外,我们基于用于从动力学室模型导出 Patlak 参数的相同假设,导出了血液输入函数的简化模型。然后,我们使用列表模式数据及其相关的非齐次泊松统计模型在惩罚最大似然估计框架中估计 Patlak 参数和血液输入函数中的参数。我们还从理论上分析了 Patlak 估计器在噪声、分辨率和信噪比 (SNR) 方面的性能,并使用结果指导我们优化扫描持续时间和成像床的任何移动,以实现最佳 SNR 。先进的估计算法与精确的成像系统模型一起,可以在没有测量血液输入功能的情况下,在短时间内使用列表模式数据稳健地计算净流入率,并使全身动态扫描变得实用。我们的算法将在基于 Nvidia Tesla GPU(图形处理单元)的工作站上实现,这是一种新的计算工具,可提供以前只能在迷你超级计算机上提供的计算能力。我们将使用列表模式数据的有效表示和系统矩阵的组合来进一步加速我们的算法。我们将使用模拟和临床数据评估所提出方法的性能,并将其与 SUV、双时间点方法和传统 Patlak 方法进行比较。我们将使用一系列性能指标,包括感兴趣区域 (ROI) 偏差、ROI 方差、病变可检测性以及计算机和人类观察者。该项目最终将提供定量动态全身 PET 成像方案,有望提高肿瘤学 PET 成像的敏感性和特异性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Quanzheng Li其他文献
Quanzheng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Quanzheng Li', 18)}}的其他基金
Deep learning Based Phenotyping and Treatment Optimization for Heart Failure with Preserved Ejection Fraction
基于深度学习的射血分数保留的心力衰竭表型分析和治疗优化
- 批准号:
10444412 - 财政年份:2022
- 资助金额:
$ 36.4万 - 项目类别:
Deep learning Based Phenotyping and Treatment Optimization for Heart Failure with Preserved Ejection Fraction
基于深度学习的射血分数保留的心力衰竭表型分析和治疗优化
- 批准号:
10592341 - 财政年份:2022
- 资助金额:
$ 36.4万 - 项目类别:
TR&D2: Advanced Statistical Image Reconstruction & Physics Informed Artificial Intelligence for Quantitative PET/MR
TR
- 批准号:
10651773 - 财政年份:2017
- 资助金额:
$ 36.4万 - 项目类别:
Unified Joint Statistical Reconstruction of PET & MR
PET统一联合统计重建
- 批准号:
10263164 - 财政年份:2017
- 资助金额:
$ 36.4万 - 项目类别:
Superhigh Sensitivity SPECT Imaging with Dense Camera Arrays
使用密集相机阵列进行超高灵敏度 SPECT 成像
- 批准号:
8702789 - 财政年份:2014
- 资助金额:
$ 36.4万 - 项目类别:
Superhigh Sensitivity SPECT Imaging with Dense Camera Arrays
使用密集相机阵列进行超高灵敏度 SPECT 成像
- 批准号:
8814222 - 财政年份:2014
- 资助金额:
$ 36.4万 - 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
- 批准号:
8237421 - 财政年份:2011
- 资助金额:
$ 36.4万 - 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
- 批准号:
8399088 - 财政年份:2011
- 资助金额:
$ 36.4万 - 项目类别:
An Integrated Statistical Framework for Lesion Detection Using Dynamic PET
使用动态 PET 进行病变检测的综合统计框架
- 批准号:
8421579 - 财政年份:2010
- 资助金额:
$ 36.4万 - 项目类别:
An Integrated Statistical Framework for Lesion Detection Using Dynamic PET
使用动态 PET 进行病变检测的综合统计框架
- 批准号:
7877521 - 财政年份:2010
- 资助金额:
$ 36.4万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 36.4万 - 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
- 批准号:
10723819 - 财政年份:2023
- 资助金额:
$ 36.4万 - 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
- 批准号:
10655968 - 财政年份:2023
- 资助金额:
$ 36.4万 - 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
- 批准号:
10678108 - 财政年份:2023
- 资助金额:
$ 36.4万 - 项目类别:
Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
- 批准号:
10798514 - 财政年份:2023
- 资助金额:
$ 36.4万 - 项目类别: