Deep learning Based Phenotyping and Treatment Optimization for Heart Failure with Preserved Ejection Fraction
基于深度学习的射血分数保留的心力衰竭表型分析和治疗优化
基本信息
- 批准号:10592341
- 负责人:
- 金额:$ 58.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAortic Valve StenosisBig DataBiological MarkersCardiacChronic Obstructive Pulmonary DiseaseClinicalClinical DataClinical TrialsCodeCommunitiesComplexComputer softwareDataDevelopmentDiabetes MellitusDiagnosisDiagnosticDimensionsDiseaseDisparateEFRACEconomic BurdenElectronic Health RecordEnvironmental Risk FactorFailureGoalsHeartHeart failureHospitalizationHypertensionImageImage AnalysisKnowledgeLaboratoriesLearningLife StyleMachine LearningMagnetic ResonanceMalignant NeoplasmsMeasurementMethodsModelingMorbidity - disease rateMorphologyNatureObesity EpidemicOrganOutcomePatient imagingPatientsPerformancePharmaceutical PreparationsPhenotypePhysiciansPilot ProjectsPopulationPrevalenceProceduresPrognosisPsychological reinforcementPublic HealthPublishingQuality of lifeRadiology SpecialtyRecommendationRecording of previous eventsReportingResearchResourcesSepsisSeriesSource CodeSurfaceSymptomsSyndromeTechniquesTherapeuticTreatment EfficacyValidationWorkaging populationautomated analysisbiomarker identificationcardiac magnetic resonance imagingclinical decision supportclinical efficacyclinical investigationclinically significantcomorbiditycomputerized data processingdeep learningdeep reinforcement learningeffective therapyelectronic health informationfeature extractionheart imagingimage processingimaging biomarkerimprovedindividualized medicinelifestyle factorslongitudinal analysismagnetic resonance imaging biomarkermortalitymultimodalitynovelnovel therapeuticsopen dataoptimal treatmentspersonalized medicinepreservationreconstructionrecurrent neural networkrisk stratificationshape analysissymposiumtargeted treatmenttreatment optimizationtreatment planningtreatment strategytrend
项目摘要
Heart failure with preserved ejection fraction (HFpEF) is a major public health problem
that is rising in prevalence with the aging population and the epidemics of obesity, diabetes, and
hypertension. HFpEF accounts for around 50% of all heart failure (HF) cases with a prevalence
of at least 3 million in the U.S. HFpEF is associated with high morbidity and mortality. After HF
hospitalization, the 5-year survival of HFpEF is a dismal 35%, which is worse than most cancers.
In addition, quality of life in HFpEF is as poor or worse than HF with reduced ejection fraction
(HFrEF). A series of large-scale clinical trials has been conducted, but most of them only provided
neutral result and failed to prove the efficacy of treatments. The alarming trend of HFpEF with
lack of effective therapies for patients constitutes a major public health problem.
Recent studies have attributed this failure to distinct systemic nature of HFpEF syndrome
and proposing sub-phenotypes within the heterogeneous HFpEF syndrome, which highlighted
the increasing need for better-targeted therapies to specific HFpEF subtypes. The seemingly
disparate but complex interrelated phenotypes, along with comorbidities, lifestyle and
environmental factors, make the multi-organ syndrome best beneficial from a big data approach.
However, conventional studies usually only included limited cross-sectional clinical symptoms,
lab results and/or gross measurements on cardiac imaging to investigate HFpEF, overlooking the
rich temporal information from electronic health record (EHR) and detailed spatial information
reserved in imaging.
In this proposal, we will introduce advance shape analysis method to extract novel image
features and biomarker from CMR images and validate at population level (Aim 1). We will then
combine image information with multi-dimensional temporal EHR data to jointly identify clinically
significant HFpEF subclasses (i.e. phenotyping) using state-of-art machine learning technique
(Aim 2). Towards therapeutic goals based on phenotyping, we will further investigate optimal
treatment strategies with current available agents using deep reinforcement learning (RL) based
on massive EHR data to meet the pressing need before ongoing trials provide sufficient evidence
on new drugs with proved clinical efficacy (Aim 3). Furthermore, we will develop an online, open-
access platform to facilitating the sharing of code, data and knowledge of this study (Aim 4). We
believe this research can improve our understanding, phenotyping and management of HFpEF,
which might positively ease the clinical and economic burdens in turn both in U.S. and worldwide.
射血分数保留的心力衰竭(HFpEF)是一个主要的公共卫生问题
随着人口老龄化以及肥胖、糖尿病和糖尿病的流行,这种疾病的患病率正在上升
高血压。 HFpEF 约占所有心力衰竭 (HF) 病例的 50%,且患病率较高
在美国,至少有 300 万 HFpEF 与高发病率和死亡率相关。高频后
住院后,HFpEF 的 5 年生存率仅为 35%,比大多数癌症还要糟糕。
此外,HFpEF 的生活质量与射血分数降低的 HF 一样差甚至更差
(HFrEF)。已经进行了一系列大规模的临床试验,但大多数仅提供
结果为中性,未能证明治疗的有效性。 HFpEF 的惊人趋势
患者缺乏有效的治疗方法构成了一个重大的公共卫生问题。
最近的研究将这种失败归因于 HFpEF 综合征的独特系统性质
并提出了异质性 HFpEF 综合征的亚表型,其中强调了
对特定 HFpEF 亚型的更好靶向治疗的需求日益增长。看似
不同但复杂的相互关联的表型,以及合并症、生活方式和
环境因素使多器官综合症从大数据方法中获益最多。
然而,传统研究通常只包括有限的横断面临床症状,
实验室结果和/或心脏成像的粗略测量来研究 HFpEF,忽略了
来自电子健康记录 (EHR) 的丰富时间信息和详细空间信息
保留在成像中。
在本提案中,我们将引入先进的形状分析方法来提取新颖的图像
来自 CMR 图像的特征和生物标志物并在人群水平上进行验证(目标 1)。我们随后将
将图像信息与多维时态EHR数据相结合,共同进行临床识别
使用最先进的机器学习技术确定重要的 HFpEF 子类(即表型)
(目标 2)。为了实现基于表型分析的治疗目标,我们将进一步研究最佳治疗方案
使用基于深度强化学习 (RL) 的当前可用药物的治疗策略
在正在进行的试验提供足够的证据之前,利用大量的电子病历数据来满足迫切的需求
开发具有临床疗效的新药(目标 3)。此外,我们将开发一个在线、开放的
访问平台,以促进本研究的代码、数据和知识共享(目标 4)。我们
相信这项研究可以提高我们对 HFpEF 的理解、表型分析和管理,
这可能会反过来积极减轻美国和全世界的临床和经济负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Quanzheng Li其他文献
Quanzheng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Quanzheng Li', 18)}}的其他基金
Deep learning Based Phenotyping and Treatment Optimization for Heart Failure with Preserved Ejection Fraction
基于深度学习的射血分数保留的心力衰竭表型分析和治疗优化
- 批准号:
10444412 - 财政年份:2022
- 资助金额:
$ 58.35万 - 项目类别:
TR&D2: Advanced Statistical Image Reconstruction & Physics Informed Artificial Intelligence for Quantitative PET/MR
TR
- 批准号:
10651773 - 财政年份:2017
- 资助金额:
$ 58.35万 - 项目类别:
Unified Joint Statistical Reconstruction of PET & MR
PET统一联合统计重建
- 批准号:
10263164 - 财政年份:2017
- 资助金额:
$ 58.35万 - 项目类别:
Superhigh Sensitivity SPECT Imaging with Dense Camera Arrays
使用密集相机阵列进行超高灵敏度 SPECT 成像
- 批准号:
8702789 - 财政年份:2014
- 资助金额:
$ 58.35万 - 项目类别:
Superhigh Sensitivity SPECT Imaging with Dense Camera Arrays
使用密集相机阵列进行超高灵敏度 SPECT 成像
- 批准号:
8814222 - 财政年份:2014
- 资助金额:
$ 58.35万 - 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
- 批准号:
8237421 - 财政年份:2011
- 资助金额:
$ 58.35万 - 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
- 批准号:
8588924 - 财政年份:2011
- 资助金额:
$ 58.35万 - 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
- 批准号:
8399088 - 财政年份:2011
- 资助金额:
$ 58.35万 - 项目类别:
An Integrated Statistical Framework for Lesion Detection Using Dynamic PET
使用动态 PET 进行病变检测的综合统计框架
- 批准号:
8421579 - 财政年份:2010
- 资助金额:
$ 58.35万 - 项目类别:
An Integrated Statistical Framework for Lesion Detection Using Dynamic PET
使用动态 PET 进行病变检测的综合统计框架
- 批准号:
7877521 - 财政年份:2010
- 资助金额:
$ 58.35万 - 项目类别:
相似国自然基金
心-脑轴血流改变介导的神经网络重塑对主动脉瓣狭窄患者认知功能的调控机制研究
- 批准号:82371187
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习的超声心动图精准评估主动脉瓣狭窄的技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
心外膜下脂肪影像组学-炎症代谢标签早期预测去主动脉瓣狭窄后左室重构逆转的风险模型构建与验证
- 批准号:82102129
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
牙龈卟啉单胞菌慢性感染促进退行性主动脉瓣狭窄的新致病机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于多模态信号融合的主动脉瓣狭窄评估方法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
- 批准号:
10629554 - 财政年份:2023
- 资助金额:
$ 58.35万 - 项目类别:
Cardiovascular risk from comprehensive evaluation of the CT calcium score exam
CT钙评分检查综合评估心血管风险
- 批准号:
10853742 - 财政年份:2023
- 资助金额:
$ 58.35万 - 项目类别:
Contribution of rare genetic variants to aortic valve stenosis in Quebec French-Canadians
罕见遗传变异对魁北克法裔加拿大人主动脉瓣狭窄的影响
- 批准号:
493134 - 财政年份:2023
- 资助金额:
$ 58.35万 - 项目类别:
Role of clonal hematopoiesis of indeterminate potential in development of calcific aortic valve stenosis
不确定潜能克隆造血在钙化性主动脉瓣狭窄发展中的作用
- 批准号:
23K07522 - 财政年份:2023
- 资助金额:
$ 58.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Circulating Proteomics to Phenotype the Development and Reversal of Myocardial Remodeling in Aortic Stenosis
循环蛋白质组学对主动脉瓣狭窄心肌重塑的发展和逆转进行表型分析
- 批准号:
10844786 - 财政年份:2023
- 资助金额:
$ 58.35万 - 项目类别: