Superhigh Sensitivity SPECT Imaging with Dense Camera Arrays

使用密集相机阵列进行超高灵敏度 SPECT 成像

基本信息

项目摘要

DESCRIPTION (provided by applicant): The long-term goal of this project is to develop a novel SPECT system design that tackles one of the most limiting aspects of SPECT instrumentations by offering a greatly improved sensitivity without sacrificing imaging resolution. This proposed approach is based on the use of a novel detection system called dense- camera-array (DCA). As we have demonstrated with a Monte Carlo study described in Sec. C.2, a small animal SPECT system based on the DCA detectors could a photon detection efficiency of >1% (as compared to the typical levels of 0.1%-0.01% found in modern pre-clinical SPECT instrumentations), while maintaining an excellent spatial resolution. This dramatic increase in sensitivity could potentially provide a radical change in how we might employ SPECT imagining in both pre-clinical and (potentially) clinical practice, by offering a dramatically lowered detecton limit and allowing for new imaging procedures that would be difficult to implement with the current generation of SPECT instrumentations. The design of dense camera array (DCA) is inspired by the compound eyes often found on small invertebrates, such as flies and moths. A DCA camera consists of a large number of independent micro-pinhole-gamma- camera-elements closely packed in a dense array (e.g. 10-20 independent camera-elements per cm2). Each of the micro-camera-elements covers a narrow view angular through the object. When constructing a SPECT system with multiple DCAs, there will be a very large number (up to several thousand) of micro-camera- elements in the system pointing towards the object and collecting gamma rays simultaneously. This is the key for attaining a super-high detection efficiency, while maintaining an excellent imaging resolution. One of the key challenges for constructing the DCA camera is the need for a state-of-art detector technology that offers an ultrahigh 3-D spatial resolution (e.g. 100mm), an excellent energy resolution, an adequate count-rate capability and a very high stopping power for energetic gamma rays. This would allow us to pack 10-20 independent micro-camera-elements into 1 cm2 area, and to ensure each micro-camera-element having a sufficient resolving power. For this project, we will utilize a recently developed small-pixel CdTe/CZT detector equipped with a hybrid pixel-waveform readout system to construct the prototype DCA cameras.
描述(由申请人提供):该项目的长期目标是开发一种新颖的 SPECT 系统设计,通过在不牺牲成像分辨率的情况下大幅提高灵敏度来解决 SPECT 仪器最限制的方面之一。 该方法基于一种称为密集相机阵列(DCA)的新型检测系统的使用。正如我们在第 2 节中描述的蒙特卡洛研究所证明的那样。 C.2,基于 DCA 探测器的小动物 SPECT 系统可以实现 >1% 的光子检测效率(与现代临床前 SPECT 仪器中的典型水平 0.1%-0.01% 相比),同时保持优异的光子检测效率空间分辨率。灵敏度的显着提高可能会彻底改变我们在临床前和(可能)临床实践中使用 SPECT 成像的方式,方法是显着降低检测限,并允许使用难以实施的新成像程序。最新一代的 SPECT 仪器。密集相机阵列(DCA)的设计灵感来自于小型无脊椎动物(如苍蝇和飞蛾)上常见的复眼。 DCA 相机由大量紧密排列在密集阵列中的独立微针孔伽马相机元件组成(例如,每平方厘米 10-20 个独立相机元件)。每个微型相机元件都覆盖穿过物体的狭窄视角。当构建具有多个 DCA 的 SPECT 系统时,系统中将有大量(多达数千个)微型相机元件指向物体并同时收集伽马射线。这是获得超高检测效率,同时保持出色成像分辨率的关键。构建 DCA 相机的关键挑战之一是需要最先进的探测器技术,该技术能够提供超高 3D 空间分辨率(例如 100mm)、出色的能量分辨率、足够的计数率能力和非常高的分辨率。对高能伽马射线具有高阻止能力。这样我们就可以将10-20个独立的微摄像元件封装到1平方厘米的面积中,并确保每个微摄像元件都具有足够的分辨率。在这个项目中,我们将利用最近开发的配备混合像素波形读出系统的小像素 CdTe/CZT 探测器来构建原型 DCA 相机。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulation study of the second-generation MR-compatible SPECT system based on the inverted compound-eye gamma camera design.
  • DOI:
    10.1088/1361-6560/aaa4fb
  • 发表时间:
    2018-02-12
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Lai X;Meng LJ
  • 通讯作者:
    Meng LJ
System Modeling and Evaluation of a Prototype Inverted-Compound Eye Gamma Camera for the Second Generation MR Compatible SPECT.
用于第二代 MR 兼容 SPECT 的原型倒置复眼伽玛相机的系统建模和评估。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Quanzheng Li其他文献

Quanzheng Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Quanzheng Li', 18)}}的其他基金

Deep learning Based Phenotyping and Treatment Optimization for Heart Failure with Preserved Ejection Fraction
基于深度学习的射血分数保留的心力衰竭表型分析和治疗优化
  • 批准号:
    10444412
  • 财政年份:
    2022
  • 资助金额:
    $ 22.97万
  • 项目类别:
Deep learning Based Phenotyping and Treatment Optimization for Heart Failure with Preserved Ejection Fraction
基于深度学习的射血分数保留的心力衰竭表型分析和治疗优化
  • 批准号:
    10592341
  • 财政年份:
    2022
  • 资助金额:
    $ 22.97万
  • 项目类别:
TR&D2: Advanced Statistical Image Reconstruction & Physics Informed Artificial Intelligence for Quantitative PET/MR
TR
  • 批准号:
    10651773
  • 财政年份:
    2017
  • 资助金额:
    $ 22.97万
  • 项目类别:
Unified Joint Statistical Reconstruction of PET & MR
PET统一联合统计重建
  • 批准号:
    10263164
  • 财政年份:
    2017
  • 资助金额:
    $ 22.97万
  • 项目类别:
Superhigh Sensitivity SPECT Imaging with Dense Camera Arrays
使用密集相机阵列进行超高灵敏度 SPECT 成像
  • 批准号:
    8702789
  • 财政年份:
    2014
  • 资助金额:
    $ 22.97万
  • 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
  • 批准号:
    8237421
  • 财政年份:
    2011
  • 资助金额:
    $ 22.97万
  • 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
  • 批准号:
    8588924
  • 财政年份:
    2011
  • 资助金额:
    $ 22.97万
  • 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
  • 批准号:
    8399088
  • 财政年份:
    2011
  • 资助金额:
    $ 22.97万
  • 项目类别:
An Integrated Statistical Framework for Lesion Detection Using Dynamic PET
使用动态 PET 进行病变检测的综合统计框架
  • 批准号:
    8421579
  • 财政年份:
    2010
  • 资助金额:
    $ 22.97万
  • 项目类别:
An Integrated Statistical Framework for Lesion Detection Using Dynamic PET
使用动态 PET 进行病变检测的综合统计框架
  • 批准号:
    7877521
  • 财政年份:
    2010
  • 资助金额:
    $ 22.97万
  • 项目类别:

相似国自然基金

兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
  • 批准号:
    72302197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
  • 批准号:
    72332003
  • 批准年份:
    2023
  • 资助金额:
    166 万元
  • 项目类别:
    重点项目
签字注册会计师动态配置问题研究:基于临阵换师视角
  • 批准号:
    72362023
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
异常获利、捐赠与会计信息操纵:基于新冠疫情的准自然实验研究
  • 批准号:
    72372061
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目

相似海外基金

Transcranial Ultrasound Algorithms and Device for Rapid Stroke Determination by Paramedics
用于医护人员快速确定中风的经颅超声算法和设备
  • 批准号:
    10730722
  • 财政年份:
    2023
  • 资助金额:
    $ 22.97万
  • 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
  • 批准号:
    10667903
  • 财政年份:
    2023
  • 资助金额:
    $ 22.97万
  • 项目类别:
Correcting biases in deep learning models
纠正深度学习模型中的偏差
  • 批准号:
    10584314
  • 财政年份:
    2023
  • 资助金额:
    $ 22.97万
  • 项目类别:
3D Fourier Imaging System for High Throughput Analyses of Cancer Organoids
用于癌症类器官高通量分析的 3D 傅里叶成像系统
  • 批准号:
    10577796
  • 财政年份:
    2022
  • 资助金额:
    $ 22.97万
  • 项目类别:
A closed-loop gravity infusion control device
一种闭环重力输液控制装置
  • 批准号:
    10384629
  • 财政年份:
    2022
  • 资助金额:
    $ 22.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了