Dynamic Visual Activity in Temporal Cortex
颞叶皮层的动态视觉活动
基本信息
- 批准号:8693371
- 负责人:
- 金额:$ 47.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-04-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimalsAnteriorAreaBehaviorBehavioralBiological ModelsBlindnessBrainCellsComplexDataDevelopmentDiseaseEnvironmentEvolutionExhibitsFaceFamiliarityFutureGoalsIndividualInferiorKnowledgeLaboratoriesLeadLearningLinkLiteratureMeasurableMedicalMethodologyMethodsMissionModelingModificationNeuronsPatternPerformancePhysiologicalPlayPopulationPrimatesProcessPropertyPublic HealthResolutionRoleShapesSpeedStimulusStructureStudy modelsSynaptic plasticitySystemTemporal LobeTestingUnited States National Institutes of HealthVisionVisualVisual system structureWorkawakebasebehavior influencebiological systemsburden of illnesscell typecopingexcitatory neuronexperienceextrastriate visual cortexfallsin vivoinformation processinginhibitory neuroninnovationneocorticalneural circuitneuroregulationnoveloptogeneticspublic health relevancereceptive fieldrelating to nervous systemrepairedresearch studyresponsetoolvisual processvisual processingvisual stimulus
项目摘要
DESCRIPTION (provided by applicant): Mounting evidence shows that functional connections between the cellular building blocks within the brain actively reorganize, even in the mature brain. Even so, this view is not yet universally accepted in part because tracking these changes in the awake, behaving animal is technically challenging. Further complicating the question of changes in single neuron properties with experience is the fact that cortex comprises many cell types, and recent data from the applicant's laboratory has revealed that plasticity may be expressed differentially across these populations. This proposal focuses on vision as a powerful model system for exploring the role that plasticity plays in normal brain function. The general hypothesis to be tested is that effective visual processing relies on experience driven, adaptive firing patterns of neurons within the inferior temporal cortex (IT), and that this experience leads
to differential physiological changes in excitatory and inhibitory neurons. These changes, in turn,
support measurable behavioral advantages. Although changes in neural responses are typically slow, artificial control of neural activity can induce modification more rapidly, and this modified
activity can guide visually directed behavior. The proposed experiments will support efforts aimed at reviving or augmenting adaptive responses in higher-level visual areas. The proposal has three fundamental aims. The first aim is to clearly demonstrate impact of long-term familiarity on visual processing for multiple object classes. The strategy for accomplishing this aim will be to track performance in a speeded recognition tasks with well-known and trial unique stimuli. The second aim is to determine how visual experience affects stimulus encoding by neurons in anterior IT cortex. This will be achieved by tracking single neuron and small population activity by combining recording of activity across spatial scales and using carefully generated visual stimuli during the tasks developed in the first aim. The final aim is to directly manipulate neuron activity in temporal cortex to control plasticity. This aim will leverage optogenetic stimulation methods already in use in the applicant's laboratory to affect neural responses on single trials in order to induce the kinds of plasticity observed in the second aim. Together, the results of this work will help bridge the large literature on synaptic plasticity at he cellular level with visual behavior in primates. An important specific focus of these studies will e to identify stimulus, task, and physiological conditions under which both excitatory and inhibitory
neurons adapt their responses through long-term experience, and to show how this plasticity can positively influence behavior. That visual experience can profoundly alter visual object representations in IT is of critical importance to efforts directed at repair of the visual system nd in understanding development disorders. Using an innovative set of tools and approaches, the projects in this proposal will emphasize the need to carefully track cellular activity in behaving animals, using complex and demanding real world tasks, with a level of resolution that will likely prove essential for future studies, and models, of higher brain function.
描述(由申请人提供):越来越多的证据表明,即使在成熟的大脑中,大脑内细胞构建块之间的功能连接也会主动重组。即便如此,这种观点还没有被普遍接受,部分原因是追踪清醒、行为动物的这些变化在技术上具有挑战性。皮层包含多种细胞类型,而申请人实验室的最新数据表明,可塑性在这些群体中的表达可能存在差异,这一事实使单神经元特性随经验变化的问题进一步复杂化。该提案的重点是将视觉作为一个强大的模型系统,用于探索可塑性在正常大脑功能中发挥的作用。要测试的一般假设是,有效的视觉处理依赖于经验驱动的下颞叶皮层 (IT) 内神经元的自适应放电模式,并且这种经验导致
兴奋性和抑制性神经元的不同生理变化。这些变化反过来又
支持可衡量的行为优势。尽管神经反应的变化通常很缓慢,但对神经活动的人工控制可以更快地诱导改变,并且这种改变
活动可以引导视觉导向的行为。拟议的实验将支持旨在恢复或增强更高级别视觉区域的适应性反应的努力。该提案具有三个基本目标。第一个目标是清楚地证明长期熟悉对多个对象类别的视觉处理的影响。实现这一目标的策略是使用众所周知的和试验的独特刺激来跟踪快速识别任务的表现。第二个目标是确定视觉体验如何影响前IT皮层神经元的刺激编码。这将通过跟踪单个神经元和小群体活动来实现,方法是将跨空间尺度的活动记录结合起来,并在第一个目标中开发的任务中使用精心生成的视觉刺激。最终目标是直接操纵颞叶皮层的神经元活动来控制可塑性。该目标将利用申请人实验室已使用的光遗传学刺激方法来影响单次试验的神经反应,以诱导第二个目标中观察到的可塑性。总之,这项工作的结果将有助于将细胞水平的突触可塑性的大量文献与灵长类动物的视觉行为联系起来。这些研究的一个重要的具体焦点是确定刺激、任务和生理条件,在这些条件下,兴奋性和抑制性
神经元通过长期经验调整其反应,并展示这种可塑性如何对行为产生积极影响。视觉体验可以深刻地改变信息技术中的视觉对象表征,这对于修复视觉系统和理解发育障碍的努力至关重要。该提案中的项目将使用一套创新的工具和方法,强调需要仔细跟踪行为动物的细胞活动,使用复杂且苛刻的现实世界任务,其分辨率水平可能对未来的研究至关重要,并且模型,具有更高的大脑功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID L SHEINBERG其他文献
DAVID L SHEINBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID L SHEINBERG', 18)}}的其他基金
相似国自然基金
十年禁渔对赤水河底栖动物群落多样性及其维持机制的影响
- 批准号:32301370
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
模拟增温对高寒草甸节肢动物“晨起”时间的影响及其生态学效应
- 批准号:32301391
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
降水变化下土壤动物协作效应对土壤有机质形成过程的影响
- 批准号:42307409
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 47.61万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 47.61万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 47.61万 - 项目类别:
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 47.61万 - 项目类别: