Electrophysiological mapping of corticocollicular projections involved with tonot
与音调相关的皮质丘状投射的电生理图
基本信息
- 批准号:8423401
- 负责人:
- 金额:$ 13.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-03-01 至 2014-02-28
- 项目状态:已结题
- 来源:
- 关键词:Acoustic StimulationAcousticsAdultAffectAmericanAnimalsAuditoryAuditory areaAuditory systemBehavioralBrainBrain StemBrain regionCaviaCell NucleusClinicalCodeDataDimensionsElectric StimulationFrequenciesFutureGoalsHearingImplantInferior ColliculusKetamineLearningLinkMapsMethodsMidbrain structureModelingMono-SNeuronsNeurosciencesOutcomeOutputPatternPerformancePlasticsPlayPositioning AttributePresynaptic TerminalsPropertyPsychological reinforcementReportingResolutionRoleSiteSpeech PerceptionStagingStimulusStructureSynapsesSystemTechniquesThalamic structureTimeTinnitusauditory pathwaybaseconditioningexperiencehearing impairmentimprovedinnovationinsightinterestneuronal cell bodypreventpublic health relevancerelating to nervous systemresponse
项目摘要
DESCRIPTION (provided by applicant): The brain is no longer viewed as a fixed system but a plastic system that adapts itself to optimally code for relevant stimuli. In some cases, the brain can experience abnormal plasticity. Hearing loss and tinnitus are two examples of debilitating conditions that affect millions of Americans and have been linked to abnormal tonotopic reorganization within the central auditory system. Understanding how tonotopic plasticity occurs within the auditory system and how we can acoustically and/or electrically stimulate the brain to induce appropriate changes in frequency coding to improve hearing can have significant clinical implications. Thus the long-term objective of the proposed studies is to map out the functional circuitry underlying tonotopic plasticity. Based on previous studies, plastic changes in frequency coding occur at all stages of the auditory pathway and involves both ascending and descending networks. However, the detailed functional organization between cortical and subcortical structures that can explain how tonotopic plasticity actually occurs within the central auditory system is still unknown. As an initial step towards identifying the detailed functional circuitry underlying tonotopic plasticity, the proposed studies will use various electrophysiological techniques to map out the functional and anatomical projection patterns from the primary auditory cortex (A1) to the central nucleus of the inferior colliculus (ICC). Both A1 and ICC have shown to play crucial roles in enabling central tonotopic reorganization. In particular, studies have demonstrated that best frequency (BF) shifts in A1 neurons induce similar BF shifts within subcortical structures, including ICC. Furthermore, BF shifts within ICC have also shown to contribute to BF shifts within A1. Using ketamine-anesthetized guinea pigs, the proposed studies will investigate how electrical stimulation of different frequency and isofrequency regions of A1 activate different frequency and isofrequency regions of ICC to begin to understand how A1 BF shifts induce similar shifts within ICC neurons. To identify the anatomical projection patterns, an innovative approach using antidromic stimulation will be used in which corticofugal neurons can be activated backwards from their axon terminals to their cell bodies. This method enables identification of mono- versus poly-synaptic projections from A1 throughout ICC. Thus in the same animal it is possible to map out the functional and anatomical projection pattern from A1 to ICC. Furthermore, BF shifts within ICC neurons will be induced using a conditioning paradigm (pure tone stimulation paired with stimulation of a BF matched A1 region). It is then possible to assess if and how the A1-to-ICC activation pattern altered as the acoustic-driven response patterns of ICC neurons change over time. These findings will begin to identify the functional circuitry underlying tonotopic plasticity that can guide future stimulation strategies for hearing loss and tinnitus. Furthermore, the developed electrophysiological methods can be expanded to investigate other brain regions of interest to the general neuroscience field.
描述(由申请人提供):大脑不再被视为一个固定的系统,而是一个可塑的系统,可以自我调整以最佳地编码相关刺激。在某些情况下,大脑可能会出现异常的可塑性。听力损失和耳鸣是影响数百万美国人的衰弱病症的两个例子,并且与中枢听觉系统内的异常音调重组有关。了解音调可塑性如何在听觉系统内发生,以及我们如何通过声学和/或电学刺激大脑以诱导频率编码的适当变化以改善听力,可能具有重要的临床意义。因此,拟议研究的长期目标是绘制出音调可塑性的功能电路。根据之前的研究,频率编码的可塑性变化发生在听觉通路的所有阶段,并且涉及上行和下行网络。然而,皮层和皮层下结构之间的详细功能组织(可以解释音调可塑性如何在中枢听觉系统内实际发生)仍然未知。作为识别音位可塑性的详细功能电路的第一步,拟议的研究将使用各种电生理学技术来绘制从初级听觉皮层(A1)到下丘中央核(ICC)的功能和解剖投影模式。 A1 和 ICC 都显示出在实现中心音位重组方面发挥着至关重要的作用。特别是,研究表明,A1 神经元的最佳频率 (BF) 变化会在皮层下结构(包括 ICC)内引起类似的 BF 变化。此外,ICC 内的 BF 变化也显示出有助于 A1 内的 BF 变化。使用氯胺酮麻醉的豚鼠,拟议的研究将调查 A1 的不同频率和等频区域的电刺激如何激活 ICC 的不同频率和等频率区域,以开始了解 A1 BF 变化如何在 ICC 神经元内引起类似的变化。为了识别解剖投射模式,将使用一种使用逆向刺激的创新方法,其中皮质神经元可以从轴突末端向后激活到细胞体。该方法能够识别整个 ICC 中 A1 的单突触投射与多突触投射。因此,在同一动物中,可以绘制出从 A1 到 ICC 的功能和解剖学投影模式。此外,ICC 神经元内的 BF 变化将使用条件范式(纯音刺激与 BF 匹配的 A1 区域的刺激配对)来诱导。然后可以评估 A1 到 ICC 的激活模式是否以及如何随着 ICC 神经元的声驱动响应模式随时间的变化而变化。这些发现将开始确定音位可塑性的功能回路,从而指导未来针对听力损失和耳鸣的刺激策略。此外,所开发的电生理学方法可以扩展到研究一般神经科学领域感兴趣的其他大脑区域。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating a new neuromodulation treatment for brain disorders using synchronized activation of multimodal pathways.
- DOI:10.1038/srep09462
- 发表时间:2015-03-25
- 期刊:
- 影响因子:4.6
- 作者:Markovitz CD;Smith BT;Gloeckner CD;Lim HH
- 通讯作者:Lim HH
Response features across the auditory midbrain reveal an organization consistent with a dual lemniscal pathway.
听觉中脑的反应特征揭示了与双丘系通路一致的组织。
- DOI:10.1152/jn.00008.2014
- 发表时间:2014
- 期刊:
- 影响因子:2.5
- 作者:Straka,MałgorzataM;Schmitz,Samuel;Lim,HubertH
- 通讯作者:Lim,HubertH
Descending and tonotopic projection patterns from the auditory cortex to the inferior colliculus.
从听觉皮层到下丘的下降和音调投射模式。
- DOI:10.1016/j.neuroscience.2015.05.032
- 发表时间:2015
- 期刊:
- 影响因子:3.3
- 作者:Straka,MM;Hughes,R;Lee,P;Lim,HH
- 通讯作者:Lim,HH
Neural integration and enhancement from the inferior colliculus up to different layers of auditory cortex.
从下丘到听觉皮层不同层的神经整合和增强。
- DOI:10.1152/jn.00022.2013
- 发表时间:2013
- 期刊:
- 影响因子:2.5
- 作者:Straka,MalgorzataM;Schendel,Dillon;Lim,HubertH
- 通讯作者:Lim,HubertH
Suppression and facilitation of auditory neurons through coordinated acoustic and midbrain stimulation: investigating a deep brain stimulator for tinnitus.
通过协调的声学和中脑刺激抑制和促进听觉神经元:研究耳鸣的深部脑刺激器。
- DOI:10.1088/1741-2560/11/6/066001
- 发表时间:2014
- 期刊:
- 影响因子:4
- 作者:Offutt,SarahJ;Ryan,KellieJ;Konop,AlexanderE;Lim,HubertH
- 通讯作者:Lim,HubertH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hubert Hyungil Lim其他文献
Hubert Hyungil Lim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hubert Hyungil Lim', 18)}}的其他基金
Electrophysiological mapping of corticocollicular projections involved with tonot
与音调相关的皮质丘状投射的电生理图
- 批准号:
8101767 - 财政年份:2011
- 资助金额:
$ 13.66万 - 项目类别:
Electrophysiological mapping of corticocollicular projections involved with tonot
与音调相关的皮质丘状投射的电生理图
- 批准号:
8230575 - 财政年份:2011
- 资助金额:
$ 13.66万 - 项目类别:
Electrophysiological Assessment of ICC to A1 Projections
ICC 到 A1 投影的电生理评估
- 批准号:
6885031 - 财政年份:2004
- 资助金额:
$ 13.66万 - 项目类别:
Electrophysiological Assessment of ICC to A1 Projections
ICC 到 A1 投影的电生理评估
- 批准号:
6937680 - 财政年份:2004
- 资助金额:
$ 13.66万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
- 批准号:82302198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
- 批准号:12371422
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
The Effect of Acoustic Enhancement of Slow-Wave Activity on Cognitive Control and Emotional Reactivity in Young Adults with Anxiety and Depression Symptoms
慢波活动的声学增强对患有焦虑和抑郁症状的年轻人的认知控制和情绪反应性的影响
- 批准号:
10501720 - 财政年份:2022
- 资助金额:
$ 13.66万 - 项目类别:
The Effect of Acoustic Enhancement of Slow-Wave Activity on Cognitive Control and Emotional Reactivity in Young Adults with Anxiety and Depression Symptoms
慢波活动的声学增强对患有焦虑和抑郁症状的年轻人的认知控制和情绪反应性的影响
- 批准号:
10678866 - 财政年份:2022
- 资助金额:
$ 13.66万 - 项目类别:
Peripheral and central contributions to auditory temporal processing deficits and speech understanding in older cochlear implantees
外周和中枢对老年人工耳蜗植入者听觉时间处理缺陷和言语理解的贡献
- 批准号:
10444172 - 财政年份:2022
- 资助金额:
$ 13.66万 - 项目类别:
Binaural cue sensitivity in children and adults with combined electric and acoustic stimulation
电和声相结合刺激儿童和成人的双耳提示敏感性
- 批准号:
10585556 - 财政年份:2022
- 资助金额:
$ 13.66万 - 项目类别:
Multimodal Musical Stimulation for Healthy Neurocognitive Aging
多模式音乐刺激促进健康的神经认知衰老
- 批准号:
10351738 - 财政年份:2022
- 资助金额:
$ 13.66万 - 项目类别: