Dynamics of Raft Formation and Growth
筏形成和生长的动力学
基本信息
- 批准号:7993055
- 负责人:
- 金额:$ 28.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-01-01 至 2012-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlanineAtherosclerosisBiologicalBiological ModelsBiological ProcessBody TemperatureCell membraneCell physiologyCell surfaceCellsCentrifugationCholesterolCollectionDataDetergentsDiseaseEnsureGangliosidesGrantGrowthHealthHeightIceLengthLeucineLipid BilayersLipidsLiposomesLiteratureLocationMalignant NeoplasmsMeasuresMembraneMembrane MicrodomainsMembrane ProteinsMethodsModelingPeptidesPhasePhospholipidsPhysical ChemistryPhysiologicalPlayPositioning AttributeProceduresPropertyProtein AnalysisProteinsResearch PersonnelResistanceRoleRuptureSignal TransductionSphingolipidsSphingomyelinsSterolsStrokeStructureSucroseSystemTemperatureTestingTimeTransmembrane DomainTryptophanUrsidae FamilyVesiclecell growthcold temperaturedensitymonolayerpressureprotein distributionresearch studyresidencestoichiometrysymposiumtheories
项目摘要
DESCRIPTION (provided by applicant): Membrane proteins that are critical for cell signaling and other biological processes reside in rafts, but rafts have been difficult to study because they have submicroscopic sizes, dynamic structures, and components that do not have fixed stoichiometries. The compositions of rafts - proteins and lipids - must be determined in order to understand which proteins interacting in cellular cascades come into proximity with each other as a result of their residence in a raft. A new experimental procedure now allows cellular rafts to be isolated at the physiological temperature of 370C, rather than the previously necessary temperature of 40C, enabling basic question in raft studies to be addressed. The compositions of many domains that exist within a cell membrane at mammalian body temperature (370C) are likely to be different from those of cell membranes that are kept on ice (40C), so many domains cannot be reliably determined at low temperature. The composition of rafts at biological temperature can now be determined, and membrane anchors of proteins favored in rafts can be compared to data derived at 40C. The relationship between types of proteins (GPI-anchored, transmembrane domain, prenylated) and amounts of cholesterol in a raft will be classified. Comparison of cholesterol levels in different types of rafts will uncover mechanisms that cause cholesterol to move between rafts. The displacement of one protein by another inside a raft, and the resulting effect on cellular processes, if any, will be assessed. The physical chemistry that controls the relationship between cholesterol and sphingomyelin content will be studied in a model raft system. The model system also allows the experimentally elusive question of how proteins contribute to raft formation to be approached in a concrete manner. For cellular studies, a new method will be employed that exploits the fact that the pressure needed to rupture a vesicle depends directly on the lipid composition of its membrane. Combining this method with the traditional approach of separation by membrane density will allow collection of a large range of domains. This will provide, for the first time, analysis of protein and lipid raft content without alteration caused by low temperature, detergents, and/or alkaline pH required by all previous raft isolation procedures. Isolating model bilayer domains containing a peptide and measuring compositions will determine the physical mechanisms that create these domains. This will yield experimentally testable hypotheses of mechanisms of biological domain formation. PUBLIC HEALTH RELEVANCE: Cholesterol is the most abundant molecule in cell plasma membranes, and its distribution within rafts and other domains is critical to the location of proteins within membranes. High cholesterol levels are implicated in diseases, including atherosclerosis and strokes. Improper distribution of proteins within rafts and other domains of cell membranes alters cell growth, related to cancers. Thus, determining the relationship between proteins and lipids, including cholesterol, within membrane rafts bears directly on cell function in health and disease.
描述(由申请人提供):对细胞信号传导和其他生物过程至关重要的膜蛋白存在于筏中,但筏很难研究,因为它们具有亚显微尺寸、动态结构和没有固定化学计量的成分。必须确定筏的组成(蛋白质和脂质),以便了解哪些蛋白质在细胞级联中相互作用,由于它们驻留在筏中而彼此接近。现在,一种新的实验程序允许在 370°C 的生理温度下分离细胞筏,而不是之前所需的 40°C 温度,从而解决筏研究中的基本问题。哺乳动物体温(370℃)下细胞膜内存在的许多结构域的组成可能与保存在冰上(40℃)的细胞膜不同,因此许多结构域在低温下无法可靠地测定。现在可以确定生物温度下筏的组成,并且可以将筏中有利的蛋白质的膜锚定物与在 40°C 下获得的数据进行比较。蛋白质类型(GPI 锚定、跨膜结构域、异戊二烯化)与筏中胆固醇含量之间的关系将被分类。比较不同类型筏中的胆固醇水平将揭示导致胆固醇在筏之间移动的机制。将评估筏内一种蛋白质被另一种蛋白质取代,以及由此产生的对细胞过程的影响(如果有)。将在模型筏系统中研究控制胆固醇和鞘磷脂含量之间关系的物理化学。该模型系统还可以以具体的方式解决实验上难以捉摸的问题,即蛋白质如何促进筏的形成。对于细胞研究,将采用一种新方法,该方法利用了以下事实:破裂囊泡所需的压力直接取决于其膜的脂质成分。将此方法与传统的膜密度分离方法相结合将允许收集大范围的域。这将首次提供蛋白质和脂筏含量的分析,而不会因所有先前筏分离程序所需的低温、洗涤剂和/或碱性 pH 值而引起改变。分离含有肽的模型双层结构域并测量成分将确定创建这些结构域的物理机制。这将产生生物域形成机制的可实验检验的假设。公共卫生相关性:胆固醇是细胞质膜中最丰富的分子,其在筏和其他域中的分布对于膜内蛋白质的位置至关重要。高胆固醇水平与疾病有关,包括动脉粥样硬化和中风。筏和细胞膜其他区域内蛋白质的不正确分布会改变与癌症相关的细胞生长。因此,确定膜筏内蛋白质和脂质(包括胆固醇)之间的关系直接关系到健康和疾病中的细胞功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FREDRIC S COHEN其他文献
FREDRIC S COHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FREDRIC S COHEN', 18)}}的其他基金
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
- 批准号:
10454109 - 财政年份:2021
- 资助金额:
$ 28.52万 - 项目类别:
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
- 批准号:
10117604 - 财政年份:2021
- 资助金额:
$ 28.52万 - 项目类别:
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
- 批准号:
10624260 - 财政年份:2021
- 资助金额:
$ 28.52万 - 项目类别:
Molecular Regulation of Fusion: Voltage Dependence and Local Physical Interaction
聚变的分子调控:电压依赖性和局部物理相互作用
- 批准号:
8432279 - 财政年份:2013
- 资助金额:
$ 28.52万 - 项目类别:
Molecular Regulation of Fusion: Voltage Dependence and Local Physical Interaction
聚变的分子调控:电压依赖性和局部物理相互作用
- 批准号:
8824948 - 财政年份:2013
- 资助金额:
$ 28.52万 - 项目类别:
相似国自然基金
环D-脯氨酸D-苯丙氨酸对金黄色葡萄球菌的受体定位及对能量代谢影响
- 批准号:31460425
- 批准年份:2014
- 资助金额:52.0 万元
- 项目类别:地区科学基金项目
NO对采后桃果实苯丙氨酸代谢的影响及其与诱导抗病性形成的关系
- 批准号:31101371
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
日粮酪氨酸、苯丙氨酸、色氨酸对泰和乌鸡合成黑色素影响及其适宜供给量、理想模式研究
- 批准号:30660129
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:地区科学基金项目
苯丙氨酸影响钙/Rho GTPases信号通路的机制研究
- 批准号:30570689
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
酵母丙氨酸tRNA的结构改变对蛋白质生物合成的影响
- 批准号:39070229
- 批准年份:1990
- 资助金额:5.0 万元
- 项目类别:面上项目
相似海外基金
The role of S-glutathione in regulating cardiac myosin binding protein-C function
S-谷胱甘肽在调节心肌肌球蛋白结合蛋白-C功能中的作用
- 批准号:
10749281 - 财政年份:2023
- 资助金额:
$ 28.52万 - 项目类别:
Perfluoroalkyl substances and non-alcoholic fatty liver disease in children: Leveraging magnetic resonance imaging to unravel potential mechanisms and exposure mixture effects
全氟烷基物质与儿童非酒精性脂肪肝:利用磁共振成像揭示潜在机制和暴露混合物效应
- 批准号:
10646759 - 财政年份:2023
- 资助金额:
$ 28.52万 - 项目类别:
The presentation and medical course of PCOS in adolescents across the United States
美国青少年多囊卵巢综合症的表现和医学过程
- 批准号:
10667067 - 财政年份:2023
- 资助金额:
$ 28.52万 - 项目类别:
Ryanodine receptor structure and function in heart failure
Ryanodine 受体结构和心力衰竭中的功能
- 批准号:
10628917 - 财政年份:2023
- 资助金额:
$ 28.52万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 28.52万 - 项目类别: