Molecular Regulation of Fusion: Voltage Dependence and Local Physical Interaction
聚变的分子调控:电压依赖性和局部物理相互作用
基本信息
- 批准号:8824948
- 负责人:
- 金额:$ 34.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:Amino AcidsBindingCell fusionCellsChargeChemicalsChimera organismChimeric ProteinsComplexConfocal MicroscopyCoupledCouplingCrystallographyCytosolDependenceElectron TransportEndosomesEnvironmentGeneticGenetic MaterialsHealthImmune responseIndividualInfectionInfection preventionLabelLaboratoriesLeadLinkLipid BindingLipidsMeasuresMediatingMembraneMembrane PotentialsMethodsMolecularMonitorMovementNADPH OxidaseNucleocapsidOxidation-ReductionPharmaceutical PreparationsPhosphatidylserinesPhysiologicalPositioning AttributePreventionProcessPropertyProtein BindingProtein IsoformsProteinsReagentRegulationResearch PersonnelRoleSiteSolutionsStructureTechniquesTestingTransmembrane DomainVaccinesViralViral Fusion ProteinsViral ProteinsVirionVirusVirus Diseasesdipole momentdisulfide bondhost-pathogen coevolutionmonolayeroxidationphysical propertyresearch studyresponsesensorvirus geneticsvoltage
项目摘要
DESCRIPTION (provided by applicant): All viruses that contain class II or class III fusion proteins (and some with class I) fuse from within endosomes. For these viruses, the endosome is the initial site of infection. In response to the low-pH endosomal environment, a fusion protein
undergoes conformational changes that cause merger of the viral and endosomal membranes, releasing the viral genetic material into cytosol. If regions on the fusion protein critical for infection are located, they will provide targets for new anti-viral drugs and vaccines. Properties of the endosomal membrane itself and its interior such as membrane voltage, acidic lipids, and redox potentials could also exert profound effects on fusion; if regulatory properties are identified and could be modified, new methods of halting infection could result. Voltage across endosomal membranes has been shown by our laboratory to control fusion of a number of types of virions that have class II or class III fusion proteins: the naturally occurring negative voltag across a membrane promotes fusion; positive voltage inhibits it. The universality of voltage dependence of class II and III fusion proteins is now reasonably certain. Chimera experiments strongly suggest the transmembrane domain (TMD) as the region of the fusion protein that confers voltage sensitivity. Voltage dependence could arise either because a TMD directly responds to voltage, or because acidic (negatively charged) lipids in outer membrane leaflets bind to TMDs. The concentration of acidic lipids in outer leaflets varies with voltage-dependent flip-flop between leaflets: enriching the concentration of acidic lipids in outer leaflets by experimentally incorporating them and measuring the consequences to voltage-dependent fusion will determine if acidic lipid binding causes voltage-dependent fusion. If it does, the binding region on the fusion protein will be identified by altering the protein. If the TMD is the voltage sensor, measuring displacement currents of synthetic TMDs will determine whether a large dipole moment is the key for sensing voltage. The energy required to transfer electrons (redox potentials) may also have an important role in regulating viral fusion: The redox potential of an endosome depends on its level of NADPH oxidase (NOX). Inhibition of NOX activity within endosomes indicates that the number of virions that fuse varies with the oxidation state in the same manner it does in cell-cell fusion. NOX activity will be altered, and fusion within endosomes monitored by confocal microscopy, to determine the relevance of redox potentials in infection. Methods to monitor membrane insertion of segments of viral fusion proteins will be developed through coupling lipophilic, charged probes to a fusion protein and electrophysiologically determining if voltage dependence of fusion is altered. This method will have far greater sensitivity than current methods. Class II and III proteins share some structural features; insertion studies could thus yield fundamental principles that unify the mechanisms of action of fusion proteins in these two classes. Clinically, identifying the mechanisms for endosomal control of viral fusion will reveal which processes could be interrupted to reduce or prevent infection.
描述(由申请人提供):所有含有 II 类或 III 类融合蛋白(以及一些 I 类)的病毒均从内涵体内融合。对于这些病毒,内体是感染的初始位点。为了响应低 pH 内体环境,融合蛋白
经历构象变化,导致病毒和内体膜合并,将病毒遗传物质释放到细胞质中。如果找到融合蛋白上对感染至关重要的区域,它们将为新的抗病毒药物和疫苗提供靶点。内体膜本身及其内部的特性,如膜电压、酸性脂质和氧化还原电位,也可能对融合产生深远的影响。如果确定并修改监管特性,可能会产生阻止感染的新方法。我们的实验室已证明,跨内体膜的电压可以控制多种具有 II 类或 III 类融合蛋白的病毒体的融合:跨膜自然产生的负电压促进融合;正电压抑制它。 II 类和 III 类融合蛋白的电压依赖性的普遍性现已相当确定。嵌合体实验强烈表明跨膜结构域(TMD)是融合蛋白中赋予电压敏感性的区域。电压依赖性的产生可能是因为 TMD 直接响应电压,或者是因为外膜小叶中的酸性(带负电)脂质与 TMD 结合。外层小叶中酸性脂质的浓度随着小叶之间电压依赖性触发器的变化而变化:通过实验合并外层小叶中酸性脂质的浓度,并测量电压依赖性融合的后果,将确定酸性脂质结合是否会导致电压-依赖融合。如果是这样,融合蛋白上的结合区域将通过改变蛋白质来识别。如果TMD是电压传感器,测量合成TMD的位移电流将确定大偶极矩是否是传感电压的关键。转移电子所需的能量(氧化还原电位)也可能在调节病毒融合中发挥重要作用:内体的氧化还原电位取决于其 NADPH 氧化酶 (NOX) 的水平。内体中 NOX 活性的抑制表明,融合的病毒体数量随氧化态的变化而变化,其方式与细胞-细胞融合中的情况相同。 NOX 活性将发生改变,并通过共聚焦显微镜监测内涵体内的融合,以确定感染中氧化还原电位的相关性。将通过将亲脂性带电探针与融合蛋白偶联并通过电生理学确定融合的电压依赖性是否改变来开发监测病毒融合蛋白片段的膜插入的方法。该方法将比现有方法具有更高的灵敏度。 II 类和 III 类蛋白质具有一些共同的结构特征;因此,插入研究可以得出统一这两类融合蛋白作用机制的基本原理。在临床上,确定病毒融合的内体控制机制将揭示哪些过程可以被中断以减少或预防感染。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FREDRIC S COHEN其他文献
FREDRIC S COHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FREDRIC S COHEN', 18)}}的其他基金
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
- 批准号:
10454109 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
- 批准号:
10117604 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
- 批准号:
10624260 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
Molecular Regulation of Fusion: Voltage Dependence and Local Physical Interaction
聚变的分子调控:电压依赖性和局部物理相互作用
- 批准号:
8432279 - 财政年份:2013
- 资助金额:
$ 34.51万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
利用分子装订二硫键新策略优化改造α-芋螺毒素的研究
- 批准号:82104024
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Proteasomal recruiters of PAX3-FOXO1 Designed via Sequence-Based Generative Models
通过基于序列的生成模型设计的 PAX3-FOXO1 蛋白酶体招募剂
- 批准号:
10826068 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Broad spectrum inhibitors of paramyxovirus envelope proteins
副粘病毒包膜蛋白的广谱抑制剂
- 批准号:
10634368 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Defining and targeting the PAX3-FOXO1 interactome
定义和定位 PAX3-FOXO1 相互作用组
- 批准号:
10902753 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Development of drug conjugates of R-spondin peptibodies for the treatment of colorectal cancer
开发用于治疗结直肠癌的 R-spondin 肽体药物缀合物
- 批准号:
10696733 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Development of drug conjugates of R-spondin peptibodies for the treatment of colorectal cancer
开发用于治疗结直肠癌的 R-spondin 肽体药物缀合物
- 批准号:
10696733 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别: