Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
基本信息
- 批准号:10117604
- 负责人:
- 金额:$ 35.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:BackBindingBiological AssayBiophysical ProcessCaveolaeCaveolinsCell Signaling ProcessCell membraneCell physiologyCellsCellular biologyChemicalsCholesterolCholesterol HomeostasisClosure by clampCommunicationCuesDataDevicesDiseaseExposure toFRAP1 geneFeedsFluorescenceFluorescence Resonance Energy TransferFoundationsGrowth FactorLeadLinkMeasurementMeasuresMembraneMethodsPathologyPerfusionPhosphorylationPhysiologicalPlasma CellsPositioning AttributeRegulationResolutionRestScaffolding ProteinSignal PathwaySignal TransductionSignaling MoleculeSignaling ProteinSiteTechniquesTertiary Protein StructureTestingTimecaveolin 1cholesterol controldehydroergosterolexperimental studyextracellularflotillininhibitor/antagonistmTOR Signaling Pathwaymembrane activitynoveloptogeneticsrestorationscaffoldsensor
项目摘要
Abstract
Understanding mechanisms cells use to maintain cholesterol homeostasis are critical in cell biology and many
diseases. To achieve this, the chemical activity of cholesterol in cell plasma membranes must be measured
because activity controls cholesterol’s effects on cellular processes. To date, plasma membrane cholesterol
concentration has been used to quantify cholesterol activity. But the activity of cholesterol is determined by its
chemical potential; concentration contributes to, but does not accurately reflect membrane activity. Because a
method to measure cholesterol chemical potential had not been available, it was not possible to properly
evaluate many of cholesterol’s effects, including those on cellular signaling. We have now developed methods
to do so. These methods and a new perfusion fluorimetry apparatus we have devised allow us to follow the
chemical potential of cholesterol of plasma membranes in real time. We have discovered that cells quickly
respond to changes in extracellular cholesterol by adjusting the cholesterol chemical potential of their plasma
membranes without changing the total content of cellular cholesterol. This finding reveals a previously unknown
mechanism to maintain cholesterol homeostasis: quick adjustment of plasma membrane chemical potentials
to control cholesterol influx and efflux. We have identified protein scaffolded domains, as typified by caveolae,
as sites at which cells sense and rapidly respond to external cholesterol. The abundance and total amount of
cholesterol that resides in caveolae are determined by the extent of phosphorylation at position Ser80 of
caveolin-1, the foundational protein of the domain. The shuttling of cholesterol between scaffolded domains
and the surround which must result upon Ser80 phosphorylation alters cholesterol chemical potential. We
therefore hypothesize that signaling cascades initiated within scaffolded domains are responsible for
maintaining cholesterol homeostasis when cells are subjected to changes in external cholesterol and to growth
factors. We further posit that these activated signaling cascades feed back to the plasma membrane to maintain
chemical potentials. Cells will be stimulated with growth factors and relevant signaling cascades will be
identified. The abundance of caveolae will be assessed by measuring the FRET (fluorescence resonance energy
transfer) signals between caveolins. Our preliminary evidence strongly implicates that growth factors and/or
changes in the level of external cholesterol stimulate the PI3K/Akt/mTOR signaling pathway that feeds back to
achieve cholesterol homeostasis. Optogenetic techniques will be used to determine whether it and/or others are
indeed responsible for control of cholesterol. Parallel experiments using the same strategies will determine if
flotillins, analogous to caveolin, also serve as sensors/regulators of cholesterol chemical potentials.
抽象的
了解细胞用于维持胆固醇稳态的机制对于细胞生物学和许多领域至关重要
为了实现这一目标,必须测量细胞质膜中胆固醇的化学活性。
因为活性控制胆固醇对细胞过程的影响迄今为止,质膜胆固醇。
浓度已被用来量化胆固醇活性,但胆固醇的活性是由其决定的。
化学势;浓度有助于但不能准确反映膜活性。
测量胆固醇化学势的方法尚未可用,不可能正确地
评估胆固醇的许多影响,包括对细胞信号传导的影响,我们现在已经开发出方法。
为此,我们设计了这些方法和新的灌注荧光测定装置。
我们发现细胞质膜的实时化学势很快。
通过调整血浆胆固醇化学势来响应细胞外胆固醇的变化
膜不改变细胞胆固醇的总含量这一发现揭示了一个以前未知的事实。
维持胆固醇稳态的机制:质膜化学势的快速调节
控制胆固醇的流入和流出,我们已经确定了以小凹为代表的蛋白质支架结构域。
作为细胞感知外部胆固醇并快速做出反应的部位。
驻留在小窝中的胆固醇由小窝中 Ser80 位点的磷酸化程度决定
Caveolin-1,该结构域的基础蛋白 胆固醇在支架结构域之间的穿梭。
Ser80 磷酸化所引起的周围环境会改变胆固醇化学势。
因此捕获了支架结构域内启动的信号级联负责
当细胞受到外部胆固醇变化和生长时维持胆固醇稳态
我们进一步认为这些激活的信号级联反馈到质膜以维持。
细胞将受到生长因子的刺激,并且相关的信号级联反应将被激活。
通过测量 FRET(荧光共振能量)来评估小凹的丰度。
我们的初步证据强烈暗示生长因子和/或小窝蛋白之间的信号。
外部胆固醇水平的变化刺激 PI3K/Akt/mTOR 信号通路,该通路反馈
实现胆固醇稳态。将使用光遗传学技术来确定它和/或其他是否是。
使用相同策略的平行实验将确定是否确实负责控制胆固醇。
与 Caveolin 类似,flotillins 也可作为胆固醇化学势的传感器/调节器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FREDRIC S COHEN其他文献
FREDRIC S COHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FREDRIC S COHEN', 18)}}的其他基金
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
- 批准号:
10454109 - 财政年份:2021
- 资助金额:
$ 35.4万 - 项目类别:
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
- 批准号:
10624260 - 财政年份:2021
- 资助金额:
$ 35.4万 - 项目类别:
Molecular Regulation of Fusion: Voltage Dependence and Local Physical Interaction
聚变的分子调控:电压依赖性和局部物理相互作用
- 批准号:
8432279 - 财政年份:2013
- 资助金额:
$ 35.4万 - 项目类别:
Molecular Regulation of Fusion: Voltage Dependence and Local Physical Interaction
聚变的分子调控:电压依赖性和局部物理相互作用
- 批准号:
8824948 - 财政年份:2013
- 资助金额:
$ 35.4万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
利用分子装订二硫键新策略优化改造α-芋螺毒素的研究
- 批准号:82104024
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Development of a rapid screening test for the detection of dihydroanatoxin-a
开发检测二氢虾毒素-a 的快速筛选试验
- 批准号:
10545266 - 财政年份:2023
- 资助金额:
$ 35.4万 - 项目类别:
A First-in-class Topical Immunoregulatory Therapeutic for Psoriasis
一流的牛皮癣局部免疫调节疗法
- 批准号:
10820331 - 财政年份:2023
- 资助金额:
$ 35.4万 - 项目类别:
Therapeutic targeting of master regulators in non-canonical AR driven advanced lethal prostate cancers
非经典 AR 驱动的晚期致命性前列腺癌中主调节因子的治疗靶向
- 批准号:
10737204 - 财政年份:2023
- 资助金额:
$ 35.4万 - 项目类别:
Southwest EDRN Clinical Validation Center for Head and Neck Cancer
西南头颈癌EDRN临床验证中心
- 批准号:
10706931 - 财政年份:2023
- 资助金额:
$ 35.4万 - 项目类别:
Somatic control of germline differentiation in spermatogenesis.
精子发生中种系分化的体细胞控制。
- 批准号:
10741641 - 财政年份:2023
- 资助金额:
$ 35.4万 - 项目类别: