High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
基本信息
- 批准号:10752370
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAffectAffinityAgreementAlanineAlgorithmsAmino Acid SequenceAmino Acid SubstitutionBase SequenceBindingBiochemicalBiological AssayBiophysicsCatalysisCellsClinVarClinicalCloningCodeCollaborationsComplexComputer ModelsCoupledDNA sequencingDataData SetDatabasesDevelopmentDiseaseEngineeringEnzymesExplosionFamilyFellowshipFluorescenceFoundationsFree EnergyFundingGene Expression RegulationGenomeGenomic medicineGlycineGoalsHumanHuman GenomeIn VitroKineticsLaboratoriesLearningLibrariesMEKsMachine LearningMapsMeasurementMeasuresMetabolismMethodsMicrofluidicsMissense MutationModelingMolecular ConformationMutagenesisMutationNatureOrthologous GeneOutputPathogenicityPerformancePhenotypePositioning AttributePostdoctoral FellowPropertyProtein BiochemistryProteinsPublishingReactionRecombinantsResearchResearch DesignResourcesRoleScanningSequence AnalysisSeriesStructureTechniquesTestingThermodynamicsTrainingTranslatingUnited States National Institutes of HealthUniversitiesValineVariantVertebral columnWorkbiophysical propertiesblindcofactorcomputer frameworkcomputerized toolscostdata integrationdeep learningdeep learning modeldesigndisease phenotypeexperimental studyfunctional outcomesgenomic datahuman diseaseimprovedin vitro testingin vivoinsightmachine learning modelmicrofluidic technologymolecular sequence databasemutantnovelprecision medicinepredictive modelingprotein expressionprotein foldingprotein functionprotein structure predictionskillssuccesssupervised learning
项目摘要
PROJECT SUMMARY
Many disease-associated variants in coding regions of the genome affect translated protein and enzyme
products by perturbing their folded conformation or their function, such as interactions with substrates or
macromolecular partners. However, we lack a unified predictive framework to predict functional effects of coding
variants, limiting how genomic data can be used in precision medicine. Machine learning models trained on large
sequence databases have claimed to predict deleterious effects from coding variants in several model proteins,
but to date their practical usage has been limited because of two major challenges. The first is the lack of
descriptive, “ground truth” biophysical datasets relating sequence variation to native protein properties, due to
the low throughput of traditional biochemical and biophysical experiments. The second is that there is not a well-
established method for integrating these data in state-of-the-art predictive models. To address these critical
limitations, I propose to apply cutting-edge microfluidic techniques to generate large quantitative biophysical
datasets connecting sequence variation to function in human acylphosphatase (ACYP), a model protein of the
alpha/beta fold family (found in ~10% of human proteins), and leverage these data to enhance predictive models.
This microfluidic platform (HT-MEK) contains an array of chambers that allow for parallel expression and
purification of >1,700 proteins, and provides measurements of in vitro kinetic and thermodynamic constants for
each. In Aim 1, I will engineer a series of ACYP functional assays using HT-MEK and derivative microfluidic
technologies, first testing in vitro expression, on-chip stability, and catalytic turnover of a small library of ACYP
variants and finally comparing to traditional biochemical measurements. In Aim 2, I will rapidly generate scanning
mutagenesis libraries in ACYP and make measurements across hundreds of ACYP variants on HT-MEK. In Aim
3, in collaboration with ML experts, I will use this unprecedented quantitative biochemical dataset to fine-tune a
cutting-edge deep learning to provide the first variant effects predictor enhanced by in vitro data at scale. My
preliminary data has shown that this model can generate de novo ACYP sequences that fold and are catalytically
proficient, suggesting that it will provide a strong foundation for functional prediction. Together, my results will
provide insight into the utility of in vitro, biochemical datasets from human proteins in training better predictors of
disease phenotypes. The training that I will obtain in carrying out these Aims will allow me to (1) develop skills
in research design, analysis, and interpretation of protein biophysics data; (2) learn advanced techniques in
protein biochemistry and statistical sequence analysis; and (3) obtain a competitive post-doctoral fellowship with
the long-term goal of establishing an independently-funded laboratory at a research-intensive university.
项目概要
基因组编码区中许多与疾病相关的变异会影响翻译的蛋白质和酶
通过扰乱产品的折叠构象或功能,例如与底物的相互作用或
然而,我们缺乏统一的预测框架来预测编码的功能效果。
变体,限制了基因组数据在精准医学中的使用方式。在大型机器学习模型上进行训练。
序列数据库声称可以预测几种模型蛋白质中编码变体的有害影响,
但迄今为止,由于两个主要挑战,它们的实际使用受到限制。
描述性的、“真实的”生物物理数据集将序列变异与天然蛋白质特性相关联,由于
传统生物化学和生物物理实验的通量低,第二是没有良好的方法。
建立了将这些数据集成到最先进的预测模型中的方法,以解决这些关键问题。
由于局限性,我建议应用尖端的微流体技术来产生大量的定量生物物理
连接序列变异与人类酰基磷酸酶 (ACYP) 功能的数据集,ACYP 是一种模型蛋白
α/β 折叠家族(存在于约 10% 的人类蛋白质中),并利用这些数据来增强预测模型。
该微流体平台 (HT-MEK) 包含一系列腔室,允许并行表达和
纯化 > 1,700 种蛋白质,并提供体外动力学和热力学常数的测量
在目标 1 中,我将使用 HT-MEK 和衍生微流体设计一系列 ACYP 功能测定。
技术,首先测试小型 ACYP 文库的体外表达、芯片稳定性和催化周转
在目标2中,我将快速生成扫描
ACYP 中的诱变文库,并在 HT-MEK 上对数百个 ACYP 变体进行测量。
3、与ML专家合作,我将使用这个前所未有的定量生化数据集来微调
尖端深度学习提供第一个通过大规模体外数据增强的变异效应预测器。
初步数据表明,该模型可以从头生成可折叠并催化的 ACYP 序列
熟练,这表明它将为功能预测提供坚实的基础。
深入了解人类蛋白质的体外生化数据集在训练更好的预测因子方面的效用
我在实现这些目标时获得的培训将使我能够 (1) 培养技能。
(2) 学习蛋白质生物物理数据的研究设计、分析和解释的先进技术;
蛋白质生物化学和统计序列分析;以及(3)获得具有竞争力的博士后奖学金
在研究密集型大学建立独立资助的实验室的长期目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Micah Olivas其他文献
Micah Olivas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
社会网络与新产品采用:二元网络结构驱动的社会影响机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Adaptation of a Digital Health Intervention for Chronic Condition Related fatigue to the Latino population
针对拉丁裔人群慢性病相关疲劳的数字健康干预措施的适应
- 批准号:
10697435 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
I-TRANSFER Improving TRansitions ANd outcomeS oF sEpsis suRvivors
I-TRANSFER 改善脓毒症幸存者的转变和结果
- 批准号:
10824878 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Using Momentary Measures to Understand Physical Activity Adoption and Maintenance among Pacific Islanders in the United States
使用临时措施了解美国太平洋岛民体育活动的采用和维持情况
- 批准号:
10737528 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别: