Ear Canal Optical Coherence Tomography System
耳道光学相干断层扫描系统
基本信息
- 批准号:8314958
- 负责人:
- 金额:$ 71.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAdultAffectAmericanArchivesAreaCaliforniaCaringCartilageComputer AssistedComputer softwareCosmeticsCost SavingsCustomDataDevelopmentDevicesEarEar MoldsEmployeeEvaluationExternal auditory canalFeedbackFoundationsGoalsGovernmentHearingHearing AidsHousingHuman ResourcesIndividualIndustryInternetLasersLightingLos AngelesManufacturer NameMapsMeasurementMeasuresMemoryMethodsMilitary PersonnelModelingMoldsNational Institute on Deafness and Other Communication DisordersNoiseOptical Coherence TomographyOpticsPainPatientsPerformancePersonsPhasePlant ResinsPreparationPrimary Health CareProceduresProcessProductionProtocols documentationProviderQuality of lifeReportingReproducibilityResearchResearch InstituteResolutionScanningShapesSkin TissueSolutionsSourceStigmataSystemTechniquesTechnologyTestingThree-Dimensional ImageThree-Dimensional ImagingTimeTissuesTransportationWorkbasebonecommercializationcostdesigndigitalexperiencehearing impairmenthuman subjectimpressionimprintimprovedinnovationinnovative technologiesinstrumentmeetingsmusicianoperationpressurepreventprototyperesearch and developmentskillssocial stigmasoundsuccesstomography
项目摘要
DESCRIPTION (provided by applicant): The National Institute on Deafness and Other Communication Disorders (NIDCD) supports research and development of innovative technologies for improving the quality and use of hearing aid devices. Physical Optics Corporation (POC) proposes the development of a new Ear Canal Optical Coherent Tomography (ECOCT) system to obtain the shape of the individual ear canal and the corresponding 3D image of the underlying tissue by a purely optical means, without taking an ear canal imprint. This innovative system will improve the accuracy of ear canal shape measurements (to better than 10 ¿m) and provide a unique opportunity to use a 3D map of the underlying tissue to help eliminate excess pressure from the hearing aid shell impinging on the most sensitive areas in the ear canal. The digital file obtained by the ECOCT system will be sent to the hearing aid manufacturer through the Internet, and will be easily archived or stored on a personal memory stick. Manufacturing cost savings will be achieved through reduction of the shell rework to obtain a perfect fit into the ear canal. In Phase I, POC demonstrated the feasibility of the ECOCT concept by assembling a proof-of-concept prototype and demonstrating its performance with phantom ear models. The capabilities of the ECOCT system to measure the three-dimensional shapes and obtain mapping of the underlying tissue provides a strong foundation for the development of the Phase II prototype. The demonstration of the technologies in the course of Phase I show the feasibility of the successful development of a commercially viable system in the course of Phase II. In Phase II, POC will develop a fully operational device for digital mapping of the ear canal shape. The prototype will be tested with ear models at POC and then the operation of the prototype will be demonstrated with human subjects at the House Research Institute, Los Angeles, California. The performance of the ECOCT Phase II prototype will be evaluated against conventional ear canal impression techniques. Software will be developed for conversion of the ECOCT data into standard formats for custom hearing device manufacturing. The commercial viability of the ECOCT system will be evaluated in the course of Phase II and work will be initiated with potential partners for commercialization of the system. The fully developed ECOCT will provide a new rapid and more precise way of measuring ear canal shapes for custom fabrication of hearing aid devices. ECOCT technology will also be used for fabrication of individual noise protection devices for a wide variety of professionals (operators of heavy machinery, musicians, airport personnel, the military, etc.). Making individually fitted hearing protection devices will facilitate their acceptance by personnel while reducing cost, and will encourage employers to enforce their use by employees. As a result, less hearing loss effects will occur among American workers, which will have a significant impact on their quality of life.
PUBLIC HEALTH RELEVANCE: Approximately 36 million American adults report some degree of hearing loss and would benefit from hearing aid use. However, only ~20% of potential hearing aid candidates actually use these devices because of issues such as inconvenience, discomfort, stigma, cosmetics, sound quality, and affordability. The conventional method of designing individual hearing aid shells involves taking imprints of the ear canal using various types of impression materials, and sending the imprints to a hearing aid manufacturer, where the imprint shape is measured by a 3D laser scanner for subsequent computer-assisted shell design. The imprint-making step is the major source of mistakes and the need for rework in hearing aid manufacturing, causing significant cost increases for hearing aid devices and disappointment with the sound quality, as well as discomfort for patients. The Ear Canal Optical Coherent Tomography (ECOCT) system will provide digital 3D imaging of the shape of individual ear canals by a purely optical means, with better accuracy, while enabling mapping of the underlying tissue to improve shell fit into the ear canal. The digital file of the ear canal shpe and the map of the underlying tissue obtained at the primary care provider's office will be easily sent to the shell manufacturer, and archived or stored on a personal memory stick. The ECOCT technology will reduce the hearing aid cost (by decreasing the rework to get a better fit) and improve the sound quality, convenience, and comfort of hearing aid use.
描述(由申请人提供):国家耳聋和其他沟通障碍研究所 (NIDCD) 支持创新技术的研究和开发,以提高助听器的质量和使用,物理光学公司 (POC) 提议开发一种新的耳朵。耳道光学相干断层扫描 (ECOCT) 系统通过纯光学手段获得个体耳道的形状和相应的底层组织的 3D 图像,无需留下耳道印记。系统将提高耳道形状测量的准确性(优于 10 µm),并提供独特的机会使用底层组织的 3D 图来帮助消除助听器外壳对耳道最敏感区域的过大压力ECOCT系统获得的数字文件将通过互联网发送给助听器制造商,并将轻松存档或存储在个人记忆棒上,通过减少外壳返工来实现制造成本的节省。完美契合在第一阶段,POC 通过组装概念验证原型并通过幻耳模型展示其性能来证明 ECOCT 概念的可行性。 ECOCT 系统测量三维形状并获取映射的能力。基础组织的研究为第二阶段原型的开发提供了坚实的基础。第一阶段的技术演示表明了第二阶段成功开发商业可行系统的可行性。 ,POC将发展用于耳道形状数字测绘的完全可操作的设备将在 POC 上用耳模型进行测试,然后将在加利福尼亚州洛杉矶的豪斯研究所与人体受试者一起演示原型的操作性能。 ECOCT 第二阶段原型将根据传统耳道印模技术进行评估,并将开发用于将 ECOCT 数据转换为定制听力设备制造的标准格式的软件。ECOCT 系统的商业可行性将在第二阶段进行评估。并将与潜在合作伙伴启动工作完全开发的 ECOCT 将为定制助听器设备提供一种快速且更精确的测量耳道形状的新方法,该技术还将用于制造各种单独的噪声防护设备。专业人士(重型机械操作员、音乐家、机场工作人员、军队等)。制作单独安装的听力保护装置将有助于人员接受,同时降低成本,并鼓励雇主强制雇员使用它们。美国人听力损失的影响将会减少工人,这将对他们的生活质量产生重大影响。
公共健康相关性:大约 3600 万美国成年人报告有一定程度的听力损失,并且会从助听器的使用中受益,但是,由于不便、不适、耻辱、美观等问题,只有约 20% 的潜在助听器候选人实际使用这些设备。设计个人助听器外壳的传统方法包括使用各种类型的印模材料在耳道上留下印记,并将印记发送给助听器制造商,在那里压印形状由 3D 激光扫描仪测量,以便进行后续的计算机辅助外壳设计。压印制作步骤是助听器制造过程中出现错误和返工的主要来源,导致助听器设备的成本显着增加,并对助听器的生产感到失望。耳道光学相干断层扫描 (ECOCT) 系统将通过纯光学手段提供个体耳道形状的数字 3D 成像,具有更高的精度,同时能够对下面的组织进行映射。改进外壳耳道形状的数字文件和在初级保健提供者办公室获得的底层组织图将轻松发送到外壳制造商,并存档或存储在个人记忆棒上。将降低助听器成本(通过减少返工以获得更好的适配)并提高助听器使用的音质、便利性和舒适度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL SHNITSER其他文献
PAUL SHNITSER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL SHNITSER', 18)}}的其他基金
Tomographic Microscope for Assessing Microcirculation
用于评估微循环的断层扫描显微镜
- 批准号:
6961471 - 财政年份:2004
- 资助金额:
$ 71.72万 - 项目类别:
Tomographic Microscope for Assessing Microcirculation
用于评估微循环的断层扫描显微镜
- 批准号:
6831425 - 财政年份:2004
- 资助金额:
$ 71.72万 - 项目类别:
Multiwavelength Optical Coherent Endoscopic Oximeter
多波长光学相干内窥镜血氧计
- 批准号:
6645625 - 财政年份:2003
- 资助金额:
$ 71.72万 - 项目类别:
LIGHT SHAPING TECHNIQUE FOR UV PSORIASIS THERAPIES
紫外线银屑病治疗的光整形技术
- 批准号:
2795890 - 财政年份:1999
- 资助金额:
$ 71.72万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 71.72万 - 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 71.72万 - 项目类别:
Effects of deep brain stimulation (DBS) on laryngeal function and associated behaviors in Parkinson Disease
深部脑刺激(DBS)对帕金森病喉功能和相关行为的影响
- 批准号:
10735930 - 财政年份:2023
- 资助金额:
$ 71.72万 - 项目类别:
Understanding Individual Differences in Acoustic-Phonetic and Contextual Cue Use In Aging
了解衰老过程中声学语音和上下文提示使用的个体差异
- 批准号:
10750603 - 财政年份:2023
- 资助金额:
$ 71.72万 - 项目类别:
The Influence of Virtual Reality Environments on Voice Perception and Production
虚拟现实环境对语音感知和产生的影响
- 批准号:
10666001 - 财政年份:2023
- 资助金额:
$ 71.72万 - 项目类别: