Ear Canal Optical Coherence Tomography System
耳道光学相干断层扫描系统
基本信息
- 批准号:8314958
- 负责人:
- 金额:$ 71.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAdultAffectAmericanArchivesAreaCaliforniaCaringCartilageComputer AssistedComputer softwareCosmeticsCost SavingsCustomDataDevelopmentDevicesEarEar MoldsEmployeeEvaluationExternal auditory canalFeedbackFoundationsGoalsGovernmentHearingHearing AidsHousingHuman ResourcesIndividualIndustryInternetLasersLightingLos AngelesManufacturer NameMapsMeasurementMeasuresMemoryMethodsMilitary PersonnelModelingMoldsNational Institute on Deafness and Other Communication DisordersNoiseOptical Coherence TomographyOpticsPainPatientsPerformancePersonsPhasePlant ResinsPreparationPrimary Health CareProceduresProcessProductionProtocols documentationProviderQuality of lifeReportingReproducibilityResearchResearch InstituteResolutionScanningShapesSkin TissueSolutionsSourceStigmataSystemTechniquesTechnologyTestingThree-Dimensional ImageThree-Dimensional ImagingTimeTissuesTransportationWorkbasebonecommercializationcostdesigndigitalexperiencehearing impairmenthuman subjectimpressionimprintimprovedinnovationinnovative technologiesinstrumentmeetingsmusicianoperationpressurepreventprototyperesearch and developmentskillssocial stigmasoundsuccesstomography
项目摘要
DESCRIPTION (provided by applicant): The National Institute on Deafness and Other Communication Disorders (NIDCD) supports research and development of innovative technologies for improving the quality and use of hearing aid devices. Physical Optics Corporation (POC) proposes the development of a new Ear Canal Optical Coherent Tomography (ECOCT) system to obtain the shape of the individual ear canal and the corresponding 3D image of the underlying tissue by a purely optical means, without taking an ear canal imprint. This innovative system will improve the accuracy of ear canal shape measurements (to better than 10 ¿m) and provide a unique opportunity to use a 3D map of the underlying tissue to help eliminate excess pressure from the hearing aid shell impinging on the most sensitive areas in the ear canal. The digital file obtained by the ECOCT system will be sent to the hearing aid manufacturer through the Internet, and will be easily archived or stored on a personal memory stick. Manufacturing cost savings will be achieved through reduction of the shell rework to obtain a perfect fit into the ear canal. In Phase I, POC demonstrated the feasibility of the ECOCT concept by assembling a proof-of-concept prototype and demonstrating its performance with phantom ear models. The capabilities of the ECOCT system to measure the three-dimensional shapes and obtain mapping of the underlying tissue provides a strong foundation for the development of the Phase II prototype. The demonstration of the technologies in the course of Phase I show the feasibility of the successful development of a commercially viable system in the course of Phase II. In Phase II, POC will develop a fully operational device for digital mapping of the ear canal shape. The prototype will be tested with ear models at POC and then the operation of the prototype will be demonstrated with human subjects at the House Research Institute, Los Angeles, California. The performance of the ECOCT Phase II prototype will be evaluated against conventional ear canal impression techniques. Software will be developed for conversion of the ECOCT data into standard formats for custom hearing device manufacturing. The commercial viability of the ECOCT system will be evaluated in the course of Phase II and work will be initiated with potential partners for commercialization of the system. The fully developed ECOCT will provide a new rapid and more precise way of measuring ear canal shapes for custom fabrication of hearing aid devices. ECOCT technology will also be used for fabrication of individual noise protection devices for a wide variety of professionals (operators of heavy machinery, musicians, airport personnel, the military, etc.). Making individually fitted hearing protection devices will facilitate their acceptance by personnel while reducing cost, and will encourage employers to enforce their use by employees. As a result, less hearing loss effects will occur among American workers, which will have a significant impact on their quality of life.
PUBLIC HEALTH RELEVANCE: Approximately 36 million American adults report some degree of hearing loss and would benefit from hearing aid use. However, only ~20% of potential hearing aid candidates actually use these devices because of issues such as inconvenience, discomfort, stigma, cosmetics, sound quality, and affordability. The conventional method of designing individual hearing aid shells involves taking imprints of the ear canal using various types of impression materials, and sending the imprints to a hearing aid manufacturer, where the imprint shape is measured by a 3D laser scanner for subsequent computer-assisted shell design. The imprint-making step is the major source of mistakes and the need for rework in hearing aid manufacturing, causing significant cost increases for hearing aid devices and disappointment with the sound quality, as well as discomfort for patients. The Ear Canal Optical Coherent Tomography (ECOCT) system will provide digital 3D imaging of the shape of individual ear canals by a purely optical means, with better accuracy, while enabling mapping of the underlying tissue to improve shell fit into the ear canal. The digital file of the ear canal shpe and the map of the underlying tissue obtained at the primary care provider's office will be easily sent to the shell manufacturer, and archived or stored on a personal memory stick. The ECOCT technology will reduce the hearing aid cost (by decreasing the rework to get a better fit) and improve the sound quality, convenience, and comfort of hearing aid use.
描述(由应用程序提供):国家耳聋和其他沟通障碍研究所(NIDCD)支持创新技术的研究和开发,以提高助听器设备的质量和使用。物理光学公司(POC)提出,新耳道光学相干断层扫描(ECOCT)系统的开发,以获得单个耳道的形状,并通过纯粹的光学手段而无需耳道的底漆,并通过纯粹的光学手段获得了相应的3D图像。这种创新的系统将提高耳道形状测量值的准确性(大于10€),并提供了使用下面组织的3D地图,以帮助消除助听器壳中撞击耳道最敏感区域的过多压力。 ECOCT系统获得的数字文件将通过Internet发送给助听器制造商,并将很容易存档或存储在个人记忆棒上。通过减少壳返工,可以节省制造成本,从而获得耳道的完美配合。在第一阶段,POC通过组装概念验证原型并通过幻影耳朵模型展示了其性能,证明了Ecoct概念的可行性。 Ecoct系统测量三维形状并获得基础组织的映射的能力为开发II期原型的发展奠定了坚实的基础。第一阶段的技术的演示表明,在第二阶段的过程中成功开发了商业上可行的系统的可行性。在第二阶段,POC将开发一个用于耳道形状的数字映射的完全操作设备。该原型将在POC上通过EAR模型进行测试,然后在加利福尼亚州洛杉矶的House Research Institute与人类受试者一起证明原型的操作。 ECOCT II期原型的性能将根据常规的早期运河印象技术进行评估。将开发软件,以将ECOCT数据转换为标准格式进行自定义听力设备制造。 ECOCT系统的商业生存能力将在第二阶段的过程中进行评估,并将与潜在的合作伙伴进行商业化的工作。完全开发的ECOCT将提供一种新的快速,更精确的方法,用于测量耳道形状,以定制助听器设备。 ECOCT技术还将用于为各种各样的专业人士(重型机械,音乐家,机场人员,军事等)制造单个噪声设备。制作单独合适的听力保护设备将有助于人员接受,同时降低成本,并鼓励员工执行员工使用。结果,美国工人之间的听力损失影响较小,这将对他们的生活质量产生重大影响。
公共卫生相关性:大约3600万美国成年人报告了一定程度的听力损失,并将受益于助听器使用。但是,由于影响,不适,污名,化妆品,声音质量和负担能力等问题,只有约20%的潜在助听器候选者实际使用了这些设备。设计单个助听器贝壳的常规方法涉及使用各种印象材料涂上耳道的烙印,并将烙印发送给助听器制造商,在该制造商中,通过3D激光扫描仪来衡量烙印形状,以进行随后的计算机辅助外壳设计。烙印的一步是错误的主要来源,也需要助听器制造业的返工,助听器设备的成本大幅增加,对声音质量的失望以及患者的不适感。耳道光学相干断层扫描(ECOCT)系统将通过纯粹的光学手段提供数字3D成像,具有更好的精度,同时启用了基础组织的映射,以改善壳拟合到耳管中。耳道SHPE的数字文件和在初级保健提供商办公室获得的基础组织的地图将很容易发送到Shell制造商,并存档或存储在个人记忆棒上。 ECOCT技术将降低助听器成本(通过减少返工以获得更好的合身性),并提高助听器的声音质量,便利性和助听器使用的舒适性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL SHNITSER其他文献
PAUL SHNITSER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL SHNITSER', 18)}}的其他基金
Tomographic Microscope for Assessing Microcirculation
用于评估微循环的断层扫描显微镜
- 批准号:
6961471 - 财政年份:2004
- 资助金额:
$ 71.72万 - 项目类别:
Tomographic Microscope for Assessing Microcirculation
用于评估微循环的断层扫描显微镜
- 批准号:
6831425 - 财政年份:2004
- 资助金额:
$ 71.72万 - 项目类别:
Multiwavelength Optical Coherent Endoscopic Oximeter
多波长光学相干内窥镜血氧计
- 批准号:
6645625 - 财政年份:2003
- 资助金额:
$ 71.72万 - 项目类别:
LIGHT SHAPING TECHNIQUE FOR UV PSORIASIS THERAPIES
紫外线银屑病治疗的光整形技术
- 批准号:
2795890 - 财政年份:1999
- 资助金额:
$ 71.72万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 71.72万 - 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 71.72万 - 项目类别:
Effects of deep brain stimulation (DBS) on laryngeal function and associated behaviors in Parkinson Disease
深部脑刺激(DBS)对帕金森病喉功能和相关行为的影响
- 批准号:
10735930 - 财政年份:2023
- 资助金额:
$ 71.72万 - 项目类别:
Understanding Individual Differences in Acoustic-Phonetic and Contextual Cue Use In Aging
了解衰老过程中声学语音和上下文提示使用的个体差异
- 批准号:
10750603 - 财政年份:2023
- 资助金额:
$ 71.72万 - 项目类别:
The Influence of Virtual Reality Environments on Voice Perception and Production
虚拟现实环境对语音感知和产生的影响
- 批准号:
10666001 - 财政年份:2023
- 资助金额:
$ 71.72万 - 项目类别: