Modulation of Signal Transduction by Nano-Topography
纳米形貌调制信号转导
基本信息
- 批准号:7277178
- 负责人:
- 金额:$ 35.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdhesivesAdvanced DevelopmentAffectArchitectureBasement membraneBehaviorBindingBiological AssayBiomechanicsCell Adhesion MoleculesCell ProliferationCell membraneCellsCellular biologyCharacteristicsComplexCorneaCuesDataDevelopmentDimensionsElementsEngineeringEpithelial CellsEventFamilyFigs - dietaryFocal AdhesionsGuanosine Triphosphate PhosphohydrolasesIntegrinsInterventionLaboratoriesLengthMAP Kinase GeneMAPK14 geneMaintenanceMediatingNanotopographyPTK2 genePathway interactionsPatternPhosphorylationPhosphotransferasesPlayProsthesisRNA InterferenceRangeReportingResearch PersonnelRoleSignal PathwaySignal TransductionSignaling MoleculeSiliconSubgroupSurfaceTestingTimeTissue EngineeringTissuesWestern BlottingWidthWorkcell behaviorcorneal epitheliumdensitygene therapymembermigrationnanoscalenovel strategiesreceptorresponserhosizesubmicronsyndecansynthetic polymer Bioplextime use
项目摘要
DESCRIPTION: A fundamental question in cell biology is how surface topography regulates cell behavior. Our previous and ongoing work has focused on defining the topography of native basement membranes and determining the "phenotypic impact" of biologically relevant length scales on modulating corneal epithelial cell behaviors. Using silicon surfaces patterned with grooves and ridges, we have shown that biologic length scale topographic features modulate corneal epithelial cell orientation, adhesion, migration and proliferation. Topography also influences the architecture and orientation of focal adhesions as well as the distribution and orientation of cytoskeletal elements within the cell. Importantly, we have demonstrated that a transition in the cellular response to topography for many behaviors occurs at approx. 1,200 nm pitch (pitch = ridge + groove width) with the greatest impact of topography generally occurring in the nanoscale range, the range of feature sizes found in the native basement membrane. It is possible that the observed effects are caused directly (e.g. biomechanical transduction events initiated at the cell membrane) and/or indirectly (e.g. the topography of the substratum dictates the density and/or distribution of adhesion complexes which in turn modulate cell behaviors). Preliminary data support the central hypothesis that nanoscale (1-100 nm) and submicron (< 1 mu m) topographic features of the substratum, characteristic of those found in the native corneal basement membranes, constrain focal contact architecture resulting in altered signaling and cellular responses. These studies have relevance to our fundamental understanding of the role that topographic cues play in the normal development and maintenance of the corneal epithelium. Furthermore, data generated will contribute to the genesis of novel strategies in tissue engineering and advance the development of ocular prosthetics. We have assembled a strong interdisciplinary team of senior investigators to test the following hypotheses: Hypothesis 1: Integrins and syndecans mediate cellular responses to topographic cues. Hypothesis 2: The scale of topographic features modulates the activity of the Ras superfamily of GTPases. Hypothesis 3: The scale of topographic features modulates matrix receptor kinase targets that, in turn, modulate cell behaviors.
描述:细胞生物学的一个基本问题是表面形貌如何调节细胞行为。我们之前和正在进行的工作重点是定义天然基底膜的形貌,并确定生物学相关长度尺度对调节角膜上皮细胞行为的“表型影响”。使用带有凹槽和脊图案的硅表面,我们已经证明生物长度尺度的地形特征调节角膜上皮细胞的方向、粘附、迁移和增殖。地形还影响粘着斑的结构和方向以及细胞内细胞骨架元素的分布和方向。重要的是,我们已经证明,细胞对许多行为的地形反应的转变发生在大约。 1,200 nm 间距(间距 = 脊 + 凹槽宽度)对地形影响最大,通常发生在纳米级范围内,即天然基底膜中发现的特征尺寸范围。观察到的效应可能是直接引起的(例如在细胞膜上引发的生物力学转导事件)和/或间接引起的(例如基质的形貌决定了粘附复合物的密度和/或分布,进而调节细胞行为)。初步数据支持中心假设,即基底的纳米级(1-100 nm)和亚微米(< 1 μm)地形特征(天然角膜基底膜中发现的特征)限制焦点接触结构,导致信号传导和细胞反应改变。这些研究与我们对地形线索在角膜上皮的正常发育和维护中所起的作用的基本理解相关。此外,生成的数据将有助于组织工程新策略的产生,并推动眼假体的发展。我们组建了一支由高级研究人员组成的强大跨学科团队来测试以下假设: 假设 1:整合素和多配体介导细胞对地形线索的反应。假设 2:地形特征的规模调节 GTPases Ras 超家族的活性。假设 3:地形特征的规模调节基质受体激酶靶点,进而调节细胞行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTOPHER John MURPHY其他文献
CHRISTOPHER John MURPHY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTOPHER John MURPHY', 18)}}的其他基金
Modulation of Signal Transduction by Nano-Topography
纳米形貌调制信号转导
- 批准号:
7102439 - 财政年份:2006
- 资助金额:
$ 35.68万 - 项目类别:
Modulation of Signal Transduction by Nano-Topography
纳米形貌调制信号转导
- 批准号:
8806561 - 财政年份:2006
- 资助金额:
$ 35.68万 - 项目类别:
相似国自然基金
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ROS清除型动态粘附水凝胶的制备及其在声带粘连防治中的作用与机制研究
- 批准号:82301292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 35.68万 - 项目类别:
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
- 批准号:
10751722 - 财政年份:2023
- 资助金额:
$ 35.68万 - 项目类别:
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 35.68万 - 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 35.68万 - 项目类别:
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
- 批准号:
10668030 - 财政年份:2023
- 资助金额:
$ 35.68万 - 项目类别: