A Non-Asymptotic Analysis of Stochastic Mirror Descent for Non-Convex Learning

非凸学习的随机镜像下降的非渐近分析

基本信息

  • 批准号:
    2444063
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Many state of the art machine learning techniques depend heavily on the optimisation of some non-convex objective. Often, this procedure is computationally expensive and requires techniques that employ stochastic approximations or regularisation using artificial noise. For instance, there are a variety of techniques in deep learning that use artificial noise applied to the data, parameters or update direction, all of which have been shown to encourage faster convergence and improved generalisation. Though many of these techniques have demonstrated their validity through repeated experimentation and testing, the theoretical framework to validate and understand them is still in its infancy.Another technique which is used to overcome the aforementioned computational difficulties is the mirror descent framework, which does so by taking advantage of the known geometric properties specific to the problem in consideration. It is highly popular in convex optimisation as in this setting there are many provable advantages to this algorithm. Its stochastic counterpart, stochastic mirror descent, is rapidly gaining popularity in non-convex learning. But again, the theoretical framework in this setting is under-developed.Through our project, we seek to develop a better understanding of the statistical and computational properties of these techniques in the large-scale learning setting. Specifically, we are interested in quantitively comparing the consistency and generalisation performance of these techniques and seeing how they change as the problem grows more challenging.Guiding much of our methodology will be the focus on non-asymptotic analysis, that is compared to analyses in which quantities are taken to their infinite limits. We believe this is essential for applications in large-scale learning where only a limited number of iterations can take place and the effect of the number of parameters on performance is of key interest.Fundamentally, our approach will be based on approximating the iterative optimisation procedure with stochastic processes that evolve continuously in time, specifically diffusion processes. With this, we gain access to the broad suite of powerful techniques for analysing diffusions. This approach has seen a growing popularity in recent years and has already yielded interesting results in the learning setting. The project will also draw heavily from the study of stochastic differential equations as well as high dimensional statistics.This project falls within the EPSRC Statistics and Applied probability area.
许多最先进的机器学习技术在很大程度上取决于某些非凸目标的优化。通常,此过程在计算上很昂贵,需要使用人工噪声采用随机近似或正则化的技术。例如,深度学习中有多种技术,它们使用用于数据,参数或更新方向的人造噪声,所有这些噪声已显示为鼓励更快的收敛和改善的概括。尽管这些技术中的许多通过重复实验和测试证明了它们的有效性,但验证和理解它们的理论框架仍处于起步阶段。其他技术用于克服上述计算困难的是镜像下降框架,它是通过利用已知的特定属性来考虑该问题来考虑的。它在凸优化中非常受欢迎,因为在这种情况下,该算法具有许多可证明的优势。它的随机对应物是随机镜下降,在非凸学习中迅速越来越受欢迎。但同样,这种设置中的理论框架是不发达的。通过我们的项目,我们寻求更好地了解大规模学习环境中这些技术的统计和计算属性。具体而言,我们有兴趣定量比较这些技术的一致性和泛化性能,并随着问题的越来越具有挑战性而看到它们的变化。指导我们的大部分方法将重点放在非催化分析上,这与分析的分析相比,在这些分析中,这些分析将数量限制为无限限制。我们认为,这对于在大规模学习中的应用至关重要,在大规模学习中,只能进行有限数量的迭代,并且参数数对性能的影响是关键的兴趣。从根本上讲,我们的方法将基于近似迭代的优化过程,其随机过程在时间上连续发展,特别是扩散过程。因此,我们可以访问广泛的强大技术来分析扩散。近年来,这种方法越来越受欢迎,并且在学习环境中已经产生了有趣的结果。该项目还将大量从随机微分方程的研究以及高维统计数据中获取。该项目属于EPSRC统计和应用概率领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
  • DOI:
    10.1038/s41598-023-40425-w
  • 发表时间:
    2023-08-16
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
  • DOI:
    10.1038/cddis.2011.59
  • 发表时间:
    2011-06-23
  • 期刊:
  • 影响因子:
    9
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

对时空的渐近结构和渐近对称性的一些研究
  • 批准号:
    11401199
  • 批准年份:
    2014
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
离散数学中的样条方法研究
  • 批准号:
    11301060
  • 批准年份:
    2013
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
样条函数在离散数学中的应用
  • 批准号:
    11226326
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
生物学和物理学中的一些偏微分方程问题
  • 批准号:
    11171357
  • 批准年份:
    2011
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
带PML的高波数散射问题的数值方法研究
  • 批准号:
    11071116
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Asymptotic analysis and behavior of free boundary for nonlinear parabolic problems
非线性抛物线问题的渐近分析和自由边界行为
  • 批准号:
    22K03387
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic analysis on PDEs appearing in mean field games, crystal growth and anomalous diffusion
平均场博弈、晶体生长和反常扩散中偏微分方程的渐近分析
  • 批准号:
    22K03382
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic analysis for partial differential equations of nonlinear waves with dissipation and dispersion
具有耗散和色散的非线性波偏微分方程的渐近分析
  • 批准号:
    22K13939
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Asymptotic analysis of vanishing diffusion in dynamic boundary conditions
动态边界条件下消失扩散的渐近分析
  • 批准号:
    21K03309
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evolution equations with the coexistence of fractional derivatives and nonlinear structures -perturbation theory and asymptotic analysis-
分数阶导数与非线性结构并存的演化方程-微扰理论与渐近分析-
  • 批准号:
    21K18581
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了