Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
基本信息
- 批准号:NE/W009293/1
- 负责人:
- 金额:$ 47.76万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Green-energy transition technologies such as carbon storage, geothermal energy extraction, hydrogen storage, and compressed-air energy storage, all rely to some extent on subsurface injection or extraction of fluids. This process of injection and retrieval is well known to industry, as it has been performed all over the world, for decades.Fluid injection processes create mechanical disturbances in the subsurface, leading to local or regional displacements that may result in tremors. In the vast majority of cases, these tremors are imperceptible to humans, and have no effect on engineered structures. Nonetheless, in recent years, low magnitude induced seismic events have had profound consequences on the social acceptance of subsurface technologies, including the halting of natural gas production at the Groningen field in the Netherlands, halting of carbon storage experiments in Spain, halting of geothermal energy projects in Switzerland, and the moratorium on UK onshore gas extraction. In light of the seismic events of increasing severity recently measured during geothermal mining in Cornwall, the need to develop a rigorous fundamental understanding of induced seismicity is clear, significant, and timely, in order to prevent induced seismicity from jeopardising the ability to effectively develop the green energy transition.Most mathematical models that are used to predict and understand tremors rely on past observations of natural tremors and earthquakes. However, fluid-driven displacement in the subsurface is a controlled event, in which the properties of the injected fluids and the conditions of injection can be adjusted and optimised to avoid large events from happening. This project aims to develop a fundamental understanding of how the conditions of subsurface rocks, and the way in which fluid is injected in these rocks, affect the amount of seismicity that may be produced.We will analyse in detail the behaviour of fluid-driven seismic events, and will develop a physically realistic model based on computer simulations, novel laboratory experiments, and comprehensive field observations. Our model will characterise the relationships between specific subsurface properties, the nature of the fluid injection, and the severity of the seismic event. These findings will be linked to hazard analysis, to identify the conditions under which processes such as carbon storage, deep geothermal energy extraction, and compressed-air energy storage, are more or less likely to create tremors. We will also investigate how to best share our scientific findings with regulators and the general public, so as to maximise the impact of this work.This project will lead to an improved understanding of the processes and conditions that underpin the severity of induced seismic events, with a vision of developing strategies that will improve our ability to prevent and control these events. This project will also provide the scientific basis to improve precision and cost-effectiveness of scientific instruments that are used to monitor the subsurface, so that we can identify tremors as they occur, and better interpret what is causing them as we observe them.In the short term, we need to develop these models so that regulators and decision-makers can develop policies based on scientific evidence, using a variety of analysis tools that inter-validate each other, thereby ensuring that their predictions are robust. This is an important step in supporting the ability of developing a resilient, diversified, sustainable, and environmentally responsible energy security strategy for the UK.In the long term, by creating confidence in the understanding of these subsurface events, and demonstrating evidence of our ability to control them, we will lead the UK into an era where humans understand why certain seismic events have occurred, allowing them to potentially develop mechanisms to forecast their occurrence, and reduce their severity.
绿色能源过渡技术,例如碳储存,地热能提取,氢存储和压缩 - 空气储能,在某种程度上都依赖于地下注入或提取流体。数十年来,这种注射和检索过程是行业众所周知的,因为它已经在世界范围内进行。流量注射过程在地下造成了机械扰动,导致局部或区域位移可能导致震颤。在绝大多数情况下,这些震颤是人类无法察觉的,并且对工程结构没有影响。尽管如此,近年来,较低的诱发地震事件对地下技术的社会接受产生了深远的影响,包括在荷兰的格罗纳宁菲尔德(Groningen Field)停止天然气生产,西班牙的碳储存实验,停止瑞士的地热能源项目的停止碳储存实验,以及瑞士的地热能项目,以及在UK上进行暂停的销售。鉴于最近在康沃尔郡地球热采矿期间衡量严重程度增加的地震事件,需要对诱导的地震性进行严格的基本理解的需求是明确的,很重要的,及时的,以防止诱发的地震性危害危害有效发展绿色能量过渡的能力。但是,地下中流体驱动的位移是一个受控事件,其中注射流体的特性和注入条件可以调整和优化,以避免发生大型事件。该项目的目的是对地下岩石的状况以及在这些岩石中注入流体的方式的基本了解,影响可能产生的地震性量。我们将详细分析流体驱动的地震事件的行为,并将开发基于计算机模拟的物理模拟模型,新型实验室实验,并构成全面的现象,并构成全面的现象。我们的模型将表征特定的地下特性,流体注入的性质和地震事件的严重程度之间的关系。这些发现将与危害分析有关,以确定碳储存,深地热能提取和压缩空气储能等过程的条件或多或少会产生震颤。我们还将调查如何与监管机构和公众最佳分享我们的科学发现,以最大程度地发挥这项工作的影响。本项目将提高人们对诱发地震事件严重性的过程和条件的深入了解,并具有开发策略的愿景,以提高我们预防和控制这些事件的能力。该项目还将提供科学的基础,以提高用于监视下表面的科学工具的精确和成本效益,以便我们可以在发生时确定震颤,并更好地解释造成这些震颤的原因。在短期内,我们需要开发这些模型,从而使监管机构和决策者可以根据其进行科学证据,以实现其努力,以便使用劳动,以便使用各种分析工具,以实现其相互分析的范围。这是支持建立有韧性,多样化,可持续和对环境负责的能源安全策略的能力的重要一步。从长远来看,通过对对这些地下事件的理解充满信心,并证明我们控制它们能力的证据,我们将带领英国进入一个时代,使人类进入一个人,使人知道某些地震事件的发生,从而使他们的发生性降低了他们的发生性,并降低了他们发生的机构,并促进了他们的范围,并降低了他们的生命力,并降低了他们的范围。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The temporal evolution of induced seismicity sequences generated by low-pressure, long-term fluid injection
- DOI:10.1007/s10950-023-10141-z
- 发表时间:2023-03
- 期刊:
- 影响因子:1.6
- 作者:Thomas J. Watkins;J. Verdon;G. Rodríguez-Pradilla
- 通讯作者:Thomas J. Watkins;J. Verdon;G. Rodríguez-Pradilla
Quantifying the variability in fault density across the UK Bowland Shale with implications for induced seismicity hazard
量化英国鲍兰页岩断层密度的变化及其对诱发地震灾害的影响
- DOI:10.1016/j.gete.2024.100534
- 发表时间:2024
- 期刊:
- 影响因子:5.1
- 作者:Rodríguez-Pradilla G
- 通讯作者:Rodríguez-Pradilla G
Assessing the variability in hydraulic fracturing-induced seismicity occurrence between North American shale plays
评估北美页岩区之间水力压裂诱发的地震活动的变化
- DOI:10.1016/j.tecto.2023.229898
- 发表时间:2023
- 期刊:
- 影响因子:2.9
- 作者:Verdon J
- 通讯作者:Verdon J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Verdon其他文献
James Verdon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Verdon', 18)}}的其他基金
DarkSeis: Seismic Imaging Of The Urban Subsurface Using Dark Fibre
DarkSeis:使用暗光纤对城市地下进行地震成像
- 批准号:
EP/Y020960/1 - 财政年份:2024
- 资助金额:
$ 47.76万 - 项目类别:
Research Grant
An integrated assessment of UK Shale resource distribution based on fundamental analyses of shale mechanical & fluid properties.
基于页岩力学基础分析的英国页岩资源分布综合评估
- 批准号:
NE/R018162/1 - 财政年份:2018
- 资助金额:
$ 47.76万 - 项目类别:
Research Grant
Impact of hydraulic fracturing in the overburden of shale resource plays: Process-based evaluation (SHAPE-UK)
水力压裂对页岩资源区覆盖层的影响:基于过程的评估 (SHAPE-UK)
- 批准号:
NE/R018006/1 - 财政年份:2018
- 资助金额:
$ 47.76万 - 项目类别:
Research Grant
gAn integrated eophysical, geodetic, geomechanical and geochemical study of CO2 storage in subsurface reservoirs
g 地下储层二氧化碳封存的综合地球物理、大地测量、地质力学和地球化学研究
- 批准号:
NE/I021497/1 - 财政年份:2011
- 资助金额:
$ 47.76万 - 项目类别:
Fellowship
相似国自然基金
纳米塑料暴露于生物体液中的凝聚动力学机制研究
- 批准号:42377418
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
胶体液滴系统可视化研究印刷电子蒸发成膜的动力学演化与多尺度调控
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
胶体液滴系统可视化研究印刷电子蒸发成膜的动力学演化与多尺度调控
- 批准号:12272390
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
柔性电子喷印制造中非牛顿流体液滴生成和冲击动力学研究
- 批准号:11932009
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:重点项目
胶体液滴蒸发中多物理效应协同下的颗粒输运动力学跨尺度研究
- 批准号:11902321
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
生物の水上走行メカニズム解明のための気液混相流れと連結物体の相互作用のCFD解析
CFD 分析气液多相流与连接物体之间的相互作用,以阐明生物体在水上运动的机制
- 批准号:
23K11131 - 财政年份:2023
- 资助金额:
$ 47.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
- 批准号:
NE/W009609/1 - 财政年份:2022
- 资助金额:
$ 47.76万 - 项目类别:
Research Grant
Discretization of molecular liquid dynamics
分子液体动力学的离散化
- 批准号:
22K03553 - 财政年份:2022
- 资助金额:
$ 47.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
- 批准号:
NE/W00948X/1 - 财政年份:2022
- 资助金额:
$ 47.76万 - 项目类别:
Research Grant
Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
- 批准号:
NE/W009390/1 - 财政年份:2022
- 资助金额:
$ 47.76万 - 项目类别:
Research Grant