Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
基本信息
- 批准号:NE/W009390/1
- 负责人:
- 金额:$ 64.31万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Green-energy transition technologies such as carbon storage, geothermal energy extraction, hydrogen storage, and compressed-air energy storage, all rely to some extent on subsurface injection or extraction of fluids. This process of injection and retrieval is well known to industry, as it has been performed all over the world, for decades.Fluid injection processes create mechanical disturbances in the subsurface, leading to local or regional displacements that may result in tremors. In the vast majority of cases, these tremors are imperceptible to humans, and have no effect on engineered structures. Nonetheless, in recent years, low magnitude induced seismic events have had profound consequences on the social acceptance of subsurface technologies, including the halting of natural gas production at the Groningen field in the Netherlands, halting of carbon storage experiments in Spain, halting of geothermal energy projects in Switzerland, and the moratorium on UK onshore gas extraction. In light of the seismic events of increasing severity recently measured during geothermal mining in Cornwall, the need to develop a rigorous fundamental understanding of induced seismicity is clear, significant, and timely, in order to prevent induced seismicity from jeopardising the ability to effectively develop the green energy transition.Most mathematical models that are used to predict and understand tremors rely on past observations of natural tremors and earthquakes. However, fluid-driven displacement in the subsurface is a controlled event, in which the properties of the injected fluids and the conditions of injection can be adjusted and optimised to avoid large events from happening. This project aims to develop a fundamental understanding of how the conditions of subsurface rocks, and the way in which fluid is injected in these rocks, affect the amount of seismicity that may be produced.We will analyse in detail the behaviour of fluid-driven seismic events, and will develop a physically realistic model based on computer simulations, novel laboratory experiments, and comprehensive field observations. Our model will characterise the relationships between specific subsurface properties, the nature of the fluid injection, and the severity of the seismic event. These findings will be linked to hazard analysis, to identify the conditions under which processes such as carbon storage, deep geothermal energy extraction, and compressed-air energy storage, are more or less likely to create tremors. We will also investigate how to best share our scientific findings with regulators and the general public, so as to maximise the impact of this work.This project will lead to an improved understanding of the processes and conditions that underpin the severity of induced seismic events, with a vision of developing strategies that will improve our ability to prevent and control these events. This project will also provide the scientific basis to improve precision and cost-effectiveness of scientific instruments that are used to monitor the subsurface, so that we can identify tremors as they occur, and better interpret what is causing them as we observe them.In the short term, we need to develop these models so that regulators and decision-makers can develop policies based on scientific evidence, using a variety of analysis tools that inter-validate each other, thereby ensuring that their predictions are robust. This is an important step in supporting the ability of developing a resilient, diversified, sustainable, and environmentally responsible energy security strategy for the UK.In the long term, by creating confidence in the understanding of these subsurface events, and demonstrating evidence of our ability to control them, we will lead the UK into an era where humans understand why certain seismic events have occurred, allowing them to potentially develop mechanisms to forecast their occurrence, and reduce their severity.
碳存储、地热能提取、氢存储和压缩空气能源存储等绿色能源转型技术在一定程度上都依赖于地下注入或提取流体。这种注入和回收过程在工业界是众所周知的,因为它已在世界各地进行了数十年。流体注入过程会在地下产生机械扰动,导致局部或区域位移,从而可能导致震动。在绝大多数情况下,这些震动人类无法察觉,并且对工程结构没有影响。尽管如此,近年来,低震级诱发的地震事件对地下技术的社会接受度产生了深远的影响,包括荷兰格罗宁根油田天然气生产的停止、西班牙碳储存实验的停止、地热能的停止瑞士的项目以及英国陆上天然气开采的暂停。鉴于最近在康沃尔郡地热开采过程中测得的地震事件日益严重,有必要对诱发地震活动进行严格的基本了解,这一点是明确、重要且及时的,以防止诱发地震活动危及有效开发地热的能力。绿色能源转型。大多数用于预测和理解地震的数学模型都依赖于过去对自然地震和地震的观察。然而,地下流体驱动位移是一个受控事件,可以调整和优化注入流体的性质和注入条件,以避免发生大事件。该项目旨在从根本上了解地下岩石的条件以及将流体注入这些岩石中的方式如何影响可能产生的地震活动量。我们将详细分析流体驱动地震的行为事件,并将开发一个基于计算机模拟、新颖的实验室实验和全面的现场观察的物理现实模型。我们的模型将描述特定地下特性、流体注入性质和地震事件严重程度之间的关系。这些发现将与危害分析联系起来,以确定碳储存、深层地热能提取和压缩空气能量储存等过程或多或少可能产生地震的条件。我们还将研究如何最好地与监管机构和公众分享我们的科学发现,以便最大限度地发挥这项工作的影响。该项目将有助于更好地了解诱发地震事件严重性的过程和条件,我们的愿景是制定战略,提高我们预防和控制这些事件的能力。该项目还将提供科学基础,以提高用于监测地下的科学仪器的精度和成本效益,以便我们能够在地震发生时识别地震,并在观察地震时更好地解释造成地震的原因。短期内,我们需要开发这些模型,以便监管者和决策者能够基于科学证据制定政策,使用各种相互验证的分析工具,从而确保他们的预测是稳健的。这是支持英国制定弹性、多元化、可持续和对环境负责的能源安全战略的重要一步。从长远来看,通过建立人们对这些地下事件的理解的信心,并展示我们能力的证据为了控制它们,我们将带领英国进入一个人类了解某些地震事件发生原因的时代,使他们能够开发出预测其发生并降低其严重程度的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julian Mecklenburgh其他文献
Towards an improved understanding of the mechanical properties and rheology of the lithosphere: an introductory article to ‘Rock Deformation from Field, Experiments and Theory: A Volume in Honour of Ernie Rutter’
提高对岩石圈机械性能和流变学的理解:《现场岩石变形、实验和理论:纪念厄尼·拉特的卷》的介绍性文章
- DOI:
10.1144/sp409.14 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Elisabetta Mariani;Julian Mecklenburgh;Daniel R. Faulkner - 通讯作者:
Daniel R. Faulkner
E. H. Rutter: a biography
E.H.鲁特:传记
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Daniel R. Faulkner;Elisabetta Mariani;Julian Mecklenburgh;S. Covey - 通讯作者:
S. Covey
Julian Mecklenburgh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julian Mecklenburgh', 18)}}的其他基金
Calibration of a new model for mantle viscosity: the role of grain boundaries from bicrystal experiments
地幔粘度新模型的校准:双晶实验中晶界的作用
- 批准号:
NE/S001727/1 - 财政年份:2018
- 资助金额:
$ 64.31万 - 项目类别:
Research Grant
An integrated assessment of UK Shale resource distribution based on fundamental analyses of shale mechanical & fluid properties.
基于页岩力学基础分析的英国页岩资源分布综合评估
- 批准号:
NE/R017883/1 - 财政年份:2018
- 资助金额:
$ 64.31万 - 项目类别:
Research Grant
The Feedback Between Volatiles and Mantle Dynamics
挥发物与地幔动力学之间的反馈
- 批准号:
NE/M000087/1 - 财政年份:2014
- 资助金额:
$ 64.31万 - 项目类别:
Research Grant
Shining light on shale: geomechanics and 4D fracture characterization
页岩的亮点:地质力学和 4D 裂缝表征
- 批准号:
NE/M001458/1 - 财政年份:2014
- 资助金额:
$ 64.31万 - 项目类别:
Research Grant
相似国自然基金
纳米塑料暴露于生物体液中的凝聚动力学机制研究
- 批准号:42377418
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
胶体液滴系统可视化研究印刷电子蒸发成膜的动力学演化与多尺度调控
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
柔性电子喷印制造中非牛顿流体液滴生成和冲击动力学研究
- 批准号:11932009
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:重点项目
胶体液滴蒸发中多物理效应协同下的颗粒输运动力学跨尺度研究
- 批准号:11902321
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于统计力学原理的可液化土体流动性理论和分析方法
- 批准号:51678300
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
生物の水上走行メカニズム解明のための気液混相流れと連結物体の相互作用のCFD解析
CFD 分析气液多相流与连接物体之间的相互作用,以阐明生物体在水上运动的机制
- 批准号:
23K11131 - 财政年份:2023
- 资助金额:
$ 64.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
- 批准号:
NE/W009609/1 - 财政年份:2022
- 资助金额:
$ 64.31万 - 项目类别:
Research Grant
Discretization of molecular liquid dynamics
分子液体动力学的离散化
- 批准号:
22K03553 - 财政年份:2022
- 资助金额:
$ 64.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
- 批准号:
NE/W00948X/1 - 财政年份:2022
- 资助金额:
$ 64.31万 - 项目类别:
Research Grant
Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
- 批准号:
NE/W009293/1 - 财政年份:2022
- 资助金额:
$ 64.31万 - 项目类别:
Research Grant