Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition

绿色能源转型背景下流体诱发地震的流体力学

基本信息

  • 批准号:
    NE/W009609/1
  • 负责人:
  • 金额:
    $ 112.83万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Green-energy transition technologies such as carbon storage, geothermal energy extraction, hydrogen storage, and compressed-air energy storage, all rely to some extent on subsurface injection or extraction of fluids. This process of injection and retrieval is well known to industry, as it has been performed all over the world, for decades.Fluid injection processes create mechanical disturbances in the subsurface, leading to local or regional displacements that may result in tremors. In the vast majority of cases, these tremors are imperceptible to humans, and have no effect on engineered structures. Nonetheless, in recent years, low magnitude induced seismic events have had profound consequences on the social acceptance of subsurface technologies, including the halting of natural gas production at the Groningen field in the Netherlands, halting of carbon storage experiments in Spain, halting of geothermal energy projects in Switzerland, and the moratorium on UK onshore gas extraction. In light of the seismic events of increasing severity recently measured during geothermal mining in Cornwall, the need to develop a rigorous fundamental understanding of induced seismicity is clear, significant, and timely, in order to prevent induced seismicity from jeopardising the ability to effectively develop the green energy transition.Most mathematical models that are used to predict and understand tremors rely on past observations of natural tremors and earthquakes. However, fluid-driven displacement in the subsurface is a controlled event, in which the properties of the injected fluids and the conditions of injection can be adjusted and optimised to avoid large events from happening. This project aims to develop a fundamental understanding of how the conditions of subsurface rocks, and the way in which fluid is injected in these rocks, affect the amount of seismicity that may be produced.We will analyse in detail the behaviour of fluid-driven seismic events, and will develop a physically realistic model based on computer simulations, novel laboratory experiments, and comprehensive field observations. Our model will characterise the relationships between specific subsurface properties, the nature of the fluid injection, and the severity of the seismic event. These findings will be linked to hazard analysis, to identify the conditions under which processes such as carbon storage, deep geothermal energy extraction, and compressed-air energy storage, are more or less likely to create tremors. We will also investigate how to best share our scientific findings with regulators and the general public, so as to maximise the impact of this work.This project will lead to an improved understanding of the processes and conditions that underpin the severity of induced seismic events, with a vision of developing strategies that will improve our ability to prevent and control these events. This project will also provide the scientific basis to improve precision and cost-effectiveness of scientific instruments that are used to monitor the subsurface, so that we can identify tremors as they occur, and better interpret what is causing them as we observe them.In the short term, we need to develop these models so that regulators and decision-makers can develop policies based on scientific evidence, using a variety of analysis tools that inter-validate each other, thereby ensuring that their predictions are robust. This is an important step in supporting the ability of developing a resilient, diversified, sustainable, and environmentally responsible energy security strategy for the UK.In the long term, by creating confidence in the understanding of these subsurface events, and demonstrating evidence of our ability to control them, we will lead the UK into an era where humans understand why certain seismic events have occurred, allowing them to potentially develop mechanisms to forecast their occurrence, and reduce their severity.
绿色能源过渡技术,例如碳储存,地热能提取,氢存储和压缩 - 空气储能,在某种程度上都依赖于地下注入或提取流体。数十年来,这种注射和检索过程是行业众所周知的,因为它已经在世界范围内进行。流量注射过程在地下造成了机械扰动,导致局部或区域位移可能导致震颤。在绝大多数情况下,这些震颤是人类无法察觉的,并且对工程结构没有影响。但是,近年来,低幅度诱导的地震事件对地下技术的社会接受产生了深远的影响,包括在荷兰的格罗纳根田间停止天然气生产,西班牙停止碳储存实验,吊死地热能瑞士的项目以及英国陆上天然气提取的暂停。鉴于最近在康沃尔郡地热矿山开采期间测量严重程度的地震事件,需要对诱发的地震性建立严格的基本理解的需求是明确的,很重要的,及时的绿色能量转变。用于预测和理解震颤的大多数数学模型都取决于过去对自然震颤和地震的观察。但是,地下中流体驱动的位移是一个受控事件,其中注射流体的特性和注入条件可以调整和优化,以避免发生大型事件。该项目旨在对地下岩石的状况以及在这些岩石中注入流体的方式的基本了解,影响可能产生的地震性数量。我们将详细分析流体驱动的地震震动的行为事件,并将基于计算机模拟,新颖的实验室实验和全面的现场观测来开发一个物理现实的模型。我们的模型将表征特定的地下特性,流体注入的性质和地震事件的严重程度之间的关系。这些发现将与危害分析有关,以确定碳储存,深地热能提取和压缩空气储能等过程的条件或多或少会产生震颤。我们还将调查如何与监管机构和公众最好地分享我们的科学发现,以最大程度地发挥这项工作的影响。该项目将提高人们对诱发地震事件严重性,地震事件严重性的过程和条件的深入理解。具有制定策略的愿景,可以提高我们预防和控制这些事件的能力。该项目还将提供科学基础,以提高用于监视地下的科学工具的精确性和成本效益,以便我们可以在发生时识别出震颤,并更好地解释我们观察到的震颤。短期,我们需要开发这些模型,以便使用多种分析工具相互估算,从而确保他们的预测稳健,从而使监管机构和决策者可以基于科学证据制定政策。这是支持建立弹性,多元化,可持续和对环境负责的能源安全策略的能力的重要一步为了控制它们,我们将带领英国进入一个时代,人类了解为什么发生某些地震事件,从而使他们有可能开发机制以预测其发生并减少其严重性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Edwards其他文献

The (Mis-) Measurement of Fiscal Decentralization in Developing and Transition Countries
发展中国家和转型国家财政分权的(错误)衡量
  • DOI:
    10.1177/1091142115616183
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    J. Boex;Benjamin Edwards
  • 通讯作者:
    Benjamin Edwards
The Influence of Earthquake Magnitude on Hazard Related to Induced Seismicity
地震震级对诱发地震活动相关灾害的影响
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benjamin Edwards
  • 通讯作者:
    Benjamin Edwards
DEPRESSION AND AN XIETY WITH PHYSICAL ILLNESS Is caring a health hazard ? The mental health and vitality of carers of a person with a disability in Australia
因身体疾病而感到抑郁和焦虑 护理是否会危害健康?
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benjamin Edwards;Daryl J. Higgins
  • 通讯作者:
    Daryl J. Higgins
Borders and gateways: measuring and analyzing national as chokepoints
边界和门户:衡量和分析国家的瓶颈
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kirtus G. Leyba;Benjamin Edwards;Cynthia Freeman;Jedidiah R. Crandall;S. Forrest
  • 通讯作者:
    S. Forrest
Red-light thresholds for induced seismicity in the UK
英国诱发地震活动的红灯阈值
  • DOI:
    10.26443/seismica.v2i2.1086
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Schultz;Brian Baptie;Benjamin Edwards;Stefan Wiemer
  • 通讯作者:
    Stefan Wiemer

Benjamin Edwards的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Edwards', 18)}}的其他基金

AHRC Infrastructure Policy & Engagement Fellowships - Heritage Science & Conservation Research PART 2
AHRC 基础设施政策
  • 批准号:
    AH/X009254/1
  • 财政年份:
    2022
  • 资助金额:
    $ 112.83万
  • 项目类别:
    Research Grant
Collaborative Research: Ice Forcing in Arc Magma Plumbing Systems (IF-AMPS)
合作研究:电弧岩浆管道系统中的冰强迫 (IF-AMPS)
  • 批准号:
    2121537
  • 财政年份:
    2021
  • 资助金额:
    $ 112.83万
  • 项目类别:
    Standard Grant
AHRC Infrastructure Policy and Engagement Fellowships - Heritage Science and Conservation Research
AHRC 基础设施政策和参与奖学金 - 遗产科学和保护研究
  • 批准号:
    AH/W001462/1
  • 财政年份:
    2021
  • 资助金额:
    $ 112.83万
  • 项目类别:
    Research Grant
Experiencing the Lost and Invisible: AR Visualisation of the Past at Bryn Celli Ddu, Anglesey
体验失落和隐形:Bryn Celli Ddu 过去的 AR 可视化,安格尔西
  • 批准号:
    AH/R009198/1
  • 财政年份:
    2018
  • 资助金额:
    $ 112.83万
  • 项目类别:
    Research Grant
Rapid deployment of a seismic array in Ecuador following the April 16th 2016 M7.8 Pedernales earthquake
2016 年 4 月 16 日 M7.8 佩德纳莱斯地震后,厄瓜多尔快速部署地震台阵
  • 批准号:
    NE/P008828/1
  • 财政年份:
    2016
  • 资助金额:
    $ 112.83万
  • 项目类别:
    Research Grant
RAPID: RUI: Collaborative Research: Rapid Response to Ongoing Tolbachik Eruption
RAPID:RUI:合作研究:对正在进行的托尔巴奇克火山喷发的快速反应
  • 批准号:
    1321648
  • 财政年份:
    2013
  • 资助金额:
    $ 112.83万
  • 项目类别:
    Standard Grant
Collaborative Research/RUI: Testing Hypotheses on Pillow Lava Production During Glaciovolcanic Eruptions
合作研究/RUI:检验冰川火山喷发期间枕状熔岩产生的假设
  • 批准号:
    1220403
  • 财政年份:
    2012
  • 资助金额:
    $ 112.83万
  • 项目类别:
    Continuing Grant
RAPID: RUI: Constraints on Fragmentation and Lava-Ice Contact From Ongoing 2010 Eyjafjallajokull Eruption, Southcentral Iceland
RAPID:RUI:2010 年冰岛中南部埃亚菲亚德拉冰川持续喷发对破碎和熔岩-冰接触的限制
  • 批准号:
    1039461
  • 财政年份:
    2010
  • 资助金额:
    $ 112.83万
  • 项目类别:
    Standard Grant
RUI: Using the Products of Volcano-Ice Interaction to Constrain Paleo-ice Conditions II: Documenting Fluctuations in Continental Ice-sheets
RUI:利用火山-冰相互作用的产物来限制古冰条件 II:记录大陆冰盖的波动
  • 批准号:
    0910712
  • 财政年份:
    2009
  • 资助金额:
    $ 112.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Using the Products of Volcano-Ice Interaction to Constrain Paleo-Ice Conditions
合作研究:利用火山-冰相互作用的产物来限制古冰条件
  • 批准号:
    0439707
  • 财政年份:
    2006
  • 资助金额:
    $ 112.83万
  • 项目类别:
    Continuing Grant

相似国自然基金

纳米塑料暴露于生物体液中的凝聚动力学机制研究
  • 批准号:
    42377418
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
胶体液滴系统可视化研究印刷电子蒸发成膜的动力学演化与多尺度调控
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
柔性电子喷印制造中非牛顿流体液滴生成和冲击动力学研究
  • 批准号:
    11932009
  • 批准年份:
    2019
  • 资助金额:
    300 万元
  • 项目类别:
    重点项目
胶体液滴蒸发中多物理效应协同下的颗粒输运动力学跨尺度研究
  • 批准号:
    11902321
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
基于统计力学原理的可液化土体流动性理论和分析方法
  • 批准号:
    51678300
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
  • 批准号:
    NE/W00948X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 112.83万
  • 项目类别:
    Research Grant
Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
  • 批准号:
    NE/W009293/1
  • 财政年份:
    2022
  • 资助金额:
    $ 112.83万
  • 项目类别:
    Research Grant
Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
  • 批准号:
    NE/W009390/1
  • 财政年份:
    2022
  • 资助金额:
    $ 112.83万
  • 项目类别:
    Research Grant
Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
  • 批准号:
    NE/W009269/1
  • 财政年份:
    2022
  • 资助金额:
    $ 112.83万
  • 项目类别:
    Research Grant
Production of super-Alfvenic plasma flow and elucidation of magneto-plasma fluid dynamics with structural change
超阿尔芬等离子体流的产生以及结构变化的磁等离子体流体动力学的阐明
  • 批准号:
    17340170
  • 财政年份:
    2005
  • 资助金额:
    $ 112.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了