Towards a Next generation Ocean Model in the Gung-Ho framework: 2D test cases (G-Ocean:2D)

在 Gung-Ho 框架中迈向下一代海洋模型:2D 测试用例 (G-Ocean:2D)

基本信息

  • 批准号:
    NE/L012111/1
  • 负责人:
  • 金额:
    $ 9.38万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

This project aims to develop and test a new a software approach to coding ocean models that can exploit the next generation of computer architectures. Ocean models form a vital component of the climate models that produce future climate projections, for example, for the Inter-Governmental Panel on Climate Change. They are also important tools for exploring all aspects of the marine environment from coastal to shelf sea and global scales. The use of ocean models relies on national computer facilities that are among the fastest computers in the world. Computer power tends to approximately double every year, and as these facilities improve then so does the potential for ocean models to provide more accurate simulations, with benefits for climate and weather forecasting, as well as our understanding of the marine environment. However, increases in computer power are now occurring primarily through increased parallelism, with more computer cores per chip and more chips per computer. Hence to exploit increases in computer power we must develop models that can exploit as many different forms of parallelism as possible. While there are many ways of achieving this, they are generally at the expense of the ease of the development of the model, so that in time only a computer science expert would be able to develop the ocean model - an unreasonable expectation. One of the particular ways ocean scientists would want to use this increase in computer power is to target horizontal resolution where the scientific understanding dictates or where it is particularly important for the application.A solution to these computational issues has been identified in an on-going project to develop a new atmospheric model for the UK Met Office (GungHo) to meet many of the same challenges and opportunities identified here. The proposed solution is to separate the model computer code into layers, each requiring different expertise to develop, and so isolate the natural scientist from the complexities of the computer science aspects. While oceans and the atmosphere show many similarities in their physics, there are some important differences, notably the large changes in depth of the ocean and the presence of land leading to complex boundaries since the oceans do not cover the whole globe as the atmosphere does. This naturally leads to ocean modellers not necessarily making the same choices in model design as atmospheric modellers. Hence, the aim of this project is to apply the 'layered approach' to a simple ocean case to prove the concepts:1. That the computational framework under development in GungHo is sufficiently flexible to accommodate the natural choices of grids and solution approaches for ocean models.2. That, when coded within this framework, conventional solution approaches can perform at least as well as the existing models in terms of their efficiency and scalability, and also have benefits of ease of use and development when highly optimisedThis work will provide a first view of how an ocean model built and designed in the GungHo framework is likely to perform. The tools built here will allow us to explore ocean model design and help answer the question: Are the approaches being developed for GungHo appropriate for the ocean? Or will alternatives be needed? The long term impact of this work is potentially very far reaching. The vision is that this is the first step on the route to an ocean model that runs efficiently on hundreds of thousands to millions of computational cores and has flexibility to change resolution as the science or user interest dictates, but is also readily usable by oceanographers of many disciplines. Realising this vision would represent a step change in Earth System Modelling and Regional System Modelling capability that would be truly world leading.
该项目旨在开发和测试一种新的软件方法来编码可以利用下一代计算机架构的海洋模型。海洋模型构成了气候模型的重要组成部分,这些模型会产生未来的气候预测,例如,对于政府间的气候变化小组。它们也是探索从沿海到架子海和全球规模的海洋环境各个方面的重要工具。海洋模型的使用依赖于世界上最快的计算机之一的国家计算机设施。计算机电源每年往往会大约翻一番,随着这些设施的改善,海洋模型提供更准确的模拟的潜力也是如此,并带有气候和天气预报的好处,以及我们对海洋环境的理解。但是,计算机功率的增加现在主要是通过增加的并行性发生,每芯片增加了计算机芯,每台计算机的芯片更多。因此,要利用计算机功率的增加,我们必须开发可以利用尽可能多的平行性形式的模型。尽管有很多方法可以实现这一目标,但它们通常是为了使模型的开发易于开发,因此只有计算机科学专家才能开发海洋模型 - 这是一个不合理的期望。海洋科学家希望使用这种计算机功率增加的特定方式之一是针对水平解决方案,在该水平分辨率下,科学的理解决定了或对应用程序特别重要。为英国大都会办公室(Gungho)开发新的大气模型的项目,以应对这里确定的许多相同的挑战和机遇。提出的解决方案是将模型计算机代码分为层,每个计算机代码都需要开发不同的专业知识,从而将自然科学家隔离到计算机科学方面的复杂性。尽管海洋和大气在物理学上显示出许多相似之处,但存在一些重要的差异,尤其是海洋深度的巨大变化以及导致复杂边界的土地的存在,因为海洋并不像大气那样覆盖整个世界。这自然会导致海洋建模器不一定在模型设计中与大气建模器做出相同的选择。因此,该项目的目的是将“分层方法”应用于简单的海洋案例以证明概念:1。 Gungho中正在开发的计算框架足够灵活,可以适应网格的自然选择和海洋模型的解决方案方法2。在此框架内进行编码时,传统的解决方案方法至少可以在其效率和可伸缩性方面执行以及现有模型,并且在高度优化的工作时,也具有易用性和开发的好处在Gungho框架中建造和设计的海洋模型可能会执行。这里构建的工具将使我们能够探索海洋模型设计并帮助回答以下问题:为Gungho开发的方法是否适合海洋?还是需要替代方案?这项工作的长期影响可能是很遥远的。愿景是,这是通往海洋模型的第一步,它可以在数十万到数百万到数百万的计算核心上有效地运行,并且具有根据科学或用户兴趣所决定的灵活性,但也很容易被海洋学家使用许多学科。意识到这一愿景将代表地球系统建模和区域系统建模能力的一步变化,这将是真正的世界领先。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prospects for improving the representation of coastal and shelf seas in global ocean models
  • DOI:
    10.5194/gmd-10-499-2017
  • 发表时间:
    2017-02-01
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Holt, Jason;Hyder, Patrick;Wood, Richard
  • 通讯作者:
    Wood, Richard
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Holt其他文献

arcos and arcospy: R and Python packages for accessing the DEA ARCOS database from 2006 - 2014
arcos 和 arcospy:用于访问 2006 年至 2014 年 DEA ARCOS 数据库的 R 和 Python 软件包
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Steven Rich;A. B. Tran;Aaron Williams;Jason Holt;Jeffery Sauer;Taylor M. Oshan
  • 通讯作者:
    Taylor M. Oshan
Multi-model comparison of trends and controls of near-bed oxygen concentration on the northwest European continental shelf under climate change
气候变化下西北欧洲大陆架近床氧浓度变化趋势及控制的多模型比较
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Giovanni Galli;S. Wakelin;J. Harle;Jason Holt;Y. Artioli
  • 通讯作者:
    Y. Artioli

Jason Holt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Holt', 18)}}的其他基金

FOCUS: Future states Of the global Coastal ocean: Understanding for Solutions
焦点:全球沿海海洋的未来状态:了解解决方案
  • 批准号:
    NE/X006271/1
  • 财政年份:
    2022
  • 资助金额:
    $ 9.38万
  • 项目类别:
    Research Grant
Coastal-Oceans in Global Climate Models: Assessment and Analysis (CONGA)
全球气候模型中的沿海海洋:评估和分析(CONGA)
  • 批准号:
    NE/V008552/1
  • 财政年份:
    2021
  • 资助金额:
    $ 9.38万
  • 项目类别:
    Research Grant
Sources, impacts and solutions for plastics in South East Asia coastal environments
东南亚沿海环境中塑料的来源、影响和解决方案
  • 批准号:
    NE/V009591/1
  • 财政年份:
    2020
  • 资助金额:
    $ 9.38万
  • 项目类别:
    Research Grant
Resolving Climate Impacts on shelf and CoastaL sea Ecosystems (ReCICLE)
解决气候对陆架和沿海海洋生态系统的影响 (ReCICLE)
  • 批准号:
    NE/M003477/2
  • 财政年份:
    2019
  • 资助金额:
    $ 9.38万
  • 项目类别:
    Research Grant
CAMPUS (Combining Autonomous observations and Models for Predicting and Understanding Shelf seas)
CAMPUS(结合自主观测和模型来预测和理解陆架海)
  • 批准号:
    NE/R006822/2
  • 财政年份:
    2019
  • 资助金额:
    $ 9.38万
  • 项目类别:
    Research Grant
CAMPUS (Combining Autonomous observations and Models for Predicting and Understanding Shelf seas)
CAMPUS(结合自主观测和模型来预测和理解陆架海)
  • 批准号:
    NE/R006822/1
  • 财政年份:
    2018
  • 资助金额:
    $ 9.38万
  • 项目类别:
    Research Grant
Coastal Resilience to flooding Impact through relocatable Storm surge forecasting Capability for developing nations (C-RISC)
沿海地区的洪水恢复能力 通过可重新定位的风暴潮预报的影响 发展中国家的能力 (C-RISC)
  • 批准号:
    NE/R009406/1
  • 财政年份:
    2017
  • 资助金额:
    $ 9.38万
  • 项目类别:
    Research Grant
Resolving Climate Impacts on shelf and CoastaL sea Ecosystems (ReCICLE)
解决气候对陆架和沿海海洋生态系统的影响 (ReCICLE)
  • 批准号:
    NE/M003477/1
  • 财政年份:
    2015
  • 资助金额:
    $ 9.38万
  • 项目类别:
    Research Grant
Integration of improved understanding of ecosystem service regulation into ERSEM model system
将加深对生态系统服务调节的理解纳入 ERSEM 模型系统
  • 批准号:
    NE/L003147/1
  • 财政年份:
    2014
  • 资助金额:
    $ 9.38万
  • 项目类别:
    Research Grant
Integrative Modelling for Shelf Seas Biogeochemistry
陆架海生物地球化学综合模拟
  • 批准号:
    NE/K001698/1
  • 财政年份:
    2013
  • 资助金额:
    $ 9.38万
  • 项目类别:
    Research Grant

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:
SoLoMo情形下“下一个最佳购物建议”(NBO)对消费者决策的影响机制研究
  • 批准号:
    71302093
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

TEXAS: Towards next-generation AMR surveillance: Assessment of novel technologies with high-throughput and multiplexing potential
德克萨斯州:迈向下一代 AMR 监测:评估具有高通量和多重潜力的新技术
  • 批准号:
    MR/Z000017/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.38万
  • 项目类别:
    Research Grant
Towards the next generation probabilistic flood forecasting system for the UK
英国下一代概率洪水预报系统
  • 批准号:
    2907694
  • 财政年份:
    2024
  • 资助金额:
    $ 9.38万
  • 项目类别:
    Studentship
CAREER: Towards Efficient Cryptography for Next Generation Applications
职业:面向下一代应用的高效密码学
  • 批准号:
    2402031
  • 财政年份:
    2023
  • 资助金额:
    $ 9.38万
  • 项目类别:
    Continuing Grant
Towards deterministic atomic scale manufacturing of next-generation quantum devices
迈向下一代量子器件的确定性原子尺度制造
  • 批准号:
    EP/X021963/1
  • 财政年份:
    2023
  • 资助金额:
    $ 9.38万
  • 项目类别:
    Fellowship
ERI: Towards Environment-Aware Wireless Communications for Next Generation Networks
ERI:迈向下一代网络的环境感知无线通信
  • 批准号:
    2243089
  • 财政年份:
    2023
  • 资助金额:
    $ 9.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了