Non-polar nitride quantum dots for application in single photon sources
用于单光子源应用的非极性氮化物量子点
基本信息
- 批准号:EP/M011682/1
- 负责人:
- 金额:$ 63.34万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Physicists understand that light can be thought of as either a wave, or a stream of tiny particles called "photons". A photon is the smallest amount of light which can exist. Using single photons, we can encode information for cryptography and computing. Quantum cryptography using photons offers the ultimate in data security, and linear optical quantum computation provides the opportunity for massively parallel data processing. However, progress towards these applications is limited by the current performance of single photon sources. Such a device can reliably provide one - and only one - photon on demand. Using a dim conventional light source in place of a true single photon source always risks the possibility of emission of multiple photons, compromising the security of quantum cryptography and corrupting the performance of quantum computers. True single photon sources can be made using semiconductor quantum dots: tiny crystals with atom-like properties, whose very nature means that they emit a single photon upon optical or electrical excitation. Different semiconductor materials are being explored, including families of materials based on compounds of arsenic (the "arsenides") and on compounds of nitrogen (the "nitrides"). Of the two, the arsenides have been fairly widely studied, and can be used to produce efficient single photon sources, but with one major disadvantage: these devices only operate at very low temperatures: typically, 250 degrees below zero, or lower. The nitrides, on the other hand, have been used to demonstrate single photon emission at room temperature, which would obviously be much more convenient for real-world applications. However, this family of materials has been studied much less, and current devices are not very efficient and have a low rate of photon emission compared to the arsenides. Another difference between the arsenides and the nitrides is that whilst the former give red or infra-red light, the latter are currently most useful at the other end of the colour spectrum: in the green, blue and ultra-violet. (However, the nitrides do have potential for emission of almost any colour of light depending on the exact composition of the material used.) A team of researchers at Oxford and Cambridge Universities have recently invented a new way to grow nitride quantum dots which may help to overcome some of the disadvantages of the nitrides. By changing the orientation of the substrate crystal on which the quantum dots are grown, we have shown that the rate of photon emission could be increased by a factor of ten or more. Furthermore, initial studies suggest that these more efficient quantum dots also retain sufficiently good temperature stability that devices could be designed which can operate with on-chip cooling, which would be a practical solution for real applications. In this project, we aim to explore the properties of quantum dots grown in this new orientation, and develop the crystal growth techniques which allow them to be incorporated into practical devices, which we will then test. We hope to develop a practical quantum technology based on the discoveries we have made about these exciting nitride materials.
物理学家知道,光可以被认为是一种波,也可以被认为是一种被称为“光子”的微小粒子流。光子是可以存在的最小光量。使用单光子,我们可以对信息进行编码以进行密码学和计算。使用光子的量子加密技术提供了终极的数据安全性,而线性光量子计算则为大规模并行数据处理提供了机会。然而,这些应用的进展受到单光子源当前性能的限制。这样的设备可以可靠地按需提供一个且仅一个光子。使用昏暗的传统光源代替真正的单光子源总是存在发射多个光子的风险,从而损害量子密码学的安全性并破坏量子计算机的性能。真正的单光子源可以使用半导体量子点制成:具有类似原子特性的微小晶体,其本质意味着它们在光或电激发下发射单光子。人们正在探索不同的半导体材料,包括基于砷化合物(“砷化物”)和氮化合物(“氮化物”)的材料族。两者中,砷化物已得到相当广泛的研究,可用于生产高效的单光子源,但有一个主要缺点:这些设备只能在非常低的温度下工作:通常为零下 250 度或更低。另一方面,氮化物已用于演示室温下的单光子发射,这显然对于实际应用来说更加方便。然而,对这一族材料的研究要少得多,并且与砷化物相比,当前的器件效率不是很高,并且光子发射率较低。砷化物和氮化物之间的另一个区别是,前者发出红光或红外光,而后者目前在色谱的另一端最有用:绿光、蓝光和紫外光。 (然而,氮化物确实有可能发射几乎任何颜色的光,具体取决于所用材料的具体成分。)牛津大学和剑桥大学的一组研究人员最近发明了一种生长氮化物量子点的新方法,这可能有助于克服了氮化物的一些缺点。通过改变生长量子点的基底晶体的方向,我们已经证明光子发射速率可以提高十倍或更多。此外,初步研究表明,这些更高效的量子点还保留了足够好的温度稳定性,可以设计出可以通过片上冷却操作的设备,这将是实际应用的实用解决方案。在这个项目中,我们的目标是探索在这种新方向上生长的量子点的特性,并开发晶体生长技术,使它们能够融入实际设备中,然后我们将对其进行测试。我们希望基于我们对这些令人兴奋的氮化物材料的发现来开发实用的量子技术。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparative studies of efficiency droop in polar and non-polar InGaN quantum wells
- DOI:10.1063/1.4954236
- 发表时间:2016-06-20
- 期刊:
- 影响因子:4
- 作者:Davies, M. J.;Dawson, P.;Oliver, R. A.
- 通讯作者:Oliver, R. A.
Porous AlGaN-Based Ultraviolet Distributed Bragg Reflectors.
- DOI:10.3390/ma11091487
- 发表时间:2018-08-21
- 期刊:
- 影响因子:0
- 作者:Griffin P;Zhu T;Oliver R
- 通讯作者:Oliver R
Spectral diffusion time scales in InGaN/GaN quantum dots
- DOI:10.1063/1.5088205
- 发表时间:2019-03-18
- 期刊:
- 影响因子:4
- 作者:Gao, Kang;Springbett, Helen;Holmes, Mark J.
- 通讯作者:Holmes, Mark J.
Properties of GaN nanowires with Sc x Ga 1 -x N insertion
Sc x Ga 1 -x N 插入的 GaN 纳米线的特性
- DOI:10.1002/pssb.201600740
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Bao A
- 通讯作者:Bao A
Structural characterization of porous GaN distributed Bragg reflectors using x-ray diffraction
使用 X 射线衍射表征多孔 GaN 分布式布拉格反射器的结构
- DOI:10.1063/1.5134143
- 发表时间:2019
- 期刊:
- 影响因子:3.2
- 作者:Griffin P
- 通讯作者:Griffin P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Oliver其他文献
Macroplastique and Botox are superior to Macroplastique alone in the management of neurogenic vesicoureteric reflux in spinal cord injury population with presumed healthy bladders
Macroplastique 和 Botox 在治疗假定膀胱健康的脊髓损伤人群的神经源性膀胱输尿管反流方面优于单独使用 Macroplastique
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Vasileios I Sakalis;Rachel Oliver;Peter J Guy;Melissa C Davies - 通讯作者:
Melissa C Davies
Nonparametric Analysis of Non-Euclidean Data on Shapes and Images
形状和图像非欧几里得数据的非参数分析
- DOI:
10.1007/s13171-018-0127-9 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
R. Bhattacharya;Rachel Oliver - 通讯作者:
Rachel Oliver
Event-based sensor multiple hypothesis tracker for space domain awareness
用于空间域感知的基于事件的传感器多假设跟踪器
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Rachel Oliver;Dmitry Savransky - 通讯作者:
Dmitry Savransky
Superiority of Bayes estimators over the MLE in high dimensional multinomial models and its implication for nonparametric Bayes theory
高维多项模型中贝叶斯估计量相对于 MLE 的优越性及其对非参数贝叶斯理论的启示
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.8
- 作者:
R. Bhattacharya;Rachel Oliver - 通讯作者:
Rachel Oliver
dentists’ views on the use of silver diammine fluoride: a UK perspective. Faculty Dental Journal
牙医对氟化二氨银的使用的看法:英国牙科学院的观点。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Laura Timms;Anna Graham;Nhs Lothian;N. Gallichan;Rachel Oliver;Emma Morgan;Royal Liverpool - 通讯作者:
Royal Liverpool
Rachel Oliver的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Oliver', 18)}}的其他基金
Segregation of alloy and dopant atoms at defects in nitride materials
氮化物材料缺陷处合金和掺杂原子的偏析
- 批准号:
EP/Y004213/1 - 财政年份:2024
- 资助金额:
$ 63.34万 - 项目类别:
Research Grant
NP2: Hybrid Nanoparticle-Nanoporous nitride materials as a novel precision manufacture route to optoelectronic devices
NP2:混合纳米颗粒-纳米多孔氮化物材料作为光电器件的新型精密制造途径
- 批准号:
EP/X017028/1 - 财政年份:2022
- 资助金额:
$ 63.34万 - 项目类别:
Research Grant
Fast Switching Zincblende GaN LEDs
快速开关闪锌矿 GaN LED
- 批准号:
EP/W03557X/1 - 财政年份:2022
- 资助金额:
$ 63.34万 - 项目类别:
Research Grant
EPSRC-FNR Collaborative Proposal: Radiative Efficiency in Advanced Sulfide Chalcopyrites for Solar Cells (REACh)
EPSRC-FNR 合作提案:太阳能电池用先进硫化黄铜矿的辐射效率 (REACh)
- 批准号:
EP/V029231/1 - 财政年份:2021
- 资助金额:
$ 63.34万 - 项目类别:
Research Grant
Simulation software for modelling nitride-based quantum light sources
用于模拟氮化物量子光源的仿真软件
- 批准号:
EP/R04502X/1 - 财政年份:2018
- 资助金额:
$ 63.34万 - 项目类别:
Research Grant
Time-resolved cathodoluminescence scanning electron microscope
时间分辨阴极发光扫描电子显微镜
- 批准号:
EP/R025193/1 - 财政年份:2018
- 资助金额:
$ 63.34万 - 项目类别:
Research Grant
Integration of RF Circuits with High Speed GaN Switching on Silicon Substrates
在硅衬底上集成射频电路与高速 GaN 开关
- 批准号:
EP/N017927/1 - 财政年份:2016
- 资助金额:
$ 63.34万 - 项目类别:
Research Grant
Beyond Blue: New Horizons in Nitrides (Platform Grant Renewal)
超越蓝色:氮化物的新视野(平台资助续订)
- 批准号:
EP/M010589/1 - 财政年份:2015
- 资助金额:
$ 63.34万 - 项目类别:
Research Grant
Study of semi-polar and non-polar nitride based structures for opto-electronic device applications
用于光电器件应用的半极性和非极性氮化物基结构的研究
- 批准号:
EP/J003603/1 - 财政年份:2012
- 资助金额:
$ 63.34万 - 项目类别:
Research Grant
相似国自然基金
基于三角台阵列的非极性氮化物红光Micro-LED生长技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
半极性III族氮化物超薄应变超晶格制备与耦合效应的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
过渡金属氮化物/铂核壳结构催化剂的原位制备及其膜电极性能研究
- 批准号:21905055
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
非极性a面InAlN薄膜及其异质结构研究
- 批准号:61904139
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
非极性面氮化物子带间跃迁结构外延生长及红外探测器研究
- 批准号:61704003
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Non-polar plane growth of AlGaN nitride semiconductors and its application to deep UV LED
AlGaN氮化物半导体非极性面生长及其在深紫外LED中的应用
- 批准号:
22H01970 - 财政年份:2022
- 资助金额:
$ 63.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Basic properties of ternary group III nitride compound semiconductor non-polar surfaces
三元III族氮化物化合物半导体非极性表面的基本性质
- 批准号:
398305088 - 财政年份:2018
- 资助金额:
$ 63.34万 - 项目类别:
Research Grants
Non-polar nitride quantum dots for application in single photon sources
用于单光子源应用的非极性氮化物量子点
- 批准号:
EP/M012379/1 - 财政年份:2015
- 资助金额:
$ 63.34万 - 项目类别:
Research Grant
Fabrication of non-polar GaN and nitride semiconductor crystals using newly developed control technique of crystal planes
利用新开发的晶面控制技术制造非极性GaN和氮化物半导体晶体
- 批准号:
25390064 - 财政年份:2013
- 资助金额:
$ 63.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of semi-polar and non-polar nitride based structures for opto-electronic device applications
用于光电器件应用的半极性和非极性氮化物基结构的研究
- 批准号:
EP/J003603/1 - 财政年份:2012
- 资助金额:
$ 63.34万 - 项目类别:
Research Grant