Time-resolved cathodoluminescence scanning electron microscope
时间分辨阴极发光扫描电子显微镜
基本信息
- 批准号:EP/R025193/1
- 负责人:
- 金额:$ 357.81万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal aims to bring to the UK an amazing microscope which will provide new and powerful capability in understanding the properties of light emitting materials and devices. These materials are key to many technologies, not only technologies that utilise the light emission from materials directly (such as energy efficient light bulbs based on light emitting diodes) but also a range of other devices which utilise the same family of materials such as solar cells and electronic devices for power conversion. Some of these technologies are in current use, but their efficiency and performance can be enhanced by achieving a better understanding of the relevant materials. Other target technologies are further from the market, but may represent the building blocks of our future security and prosperity. For example, the new microscope will provide information about light sources which emit one and only one fundamental particle of light (photon) on demand. Such "quantum light sources" are a potential building block for quantum computers and for quantum cryptography schemes which represent the ultimate in secure data transfer.How will the new microscope allow us to advance the development of all these technologies? It is based on a scanning electron microscope, which utilises an electron beam incident on a sample surface to achieve resolutions almost three orders of magnitude better than can be achieved using a standard light microscope. It thus accesses the nanometre scale, which is vital to addressing modern day electronic devices. Standard electron microscopy accesses the topography of a surface, but the incoming electron beam also excites some of the electrons within the material under examination into states with a higher energy. When these electrons relax back down to their usual low energy state, light may be given out, and the colour and intensity of that light is incredibly informative about the properties of the material under examination. This light emission can be mapped on a scale of ~10 nanometres so that nanoscale structures ranging from defects to deliberately engineered quantum objects can be addressed. This technique is known as cathodoluminescence, and has been in use for many years.The new capability of our proposed system is that it will map not only the colour and intensity of the light emission, but also allow us to measure the timescales on which an electron relaxes back down to its low energy state. We use the phrase "in the blink of an eye" to describe something that happens extraordinarily quickly. A real eye blink takes at least 100 milliseconds, whereas the relevant timescales for the electron to return to its low energy state could be almost 10 billion times quicker than this! The new microscope will be able to measure processes occurring on this time scale, by addressing how long after an electron pulse excites the material a photon is emitted. It will even be able to distinguish between photons with different wavelengths (or colours) being emitted on different time scales. Crucially, coupling this time-resolved capability with the ability to vary the temperature, we will be able to infer not only the time scales on which electrons relax to low energy sites emitting a photon, but also the time scales by which electrons reduce their energy by other, non-light-emitting routes. These non-light-emitting processes are what limit the efficiency of light emitting diodes, for example. Overall, across a broad range of materials, we will build up an understanding of how electrons interact with nanoscale structure to define a material's electrical and optical properties and hence what factors limit or improve the performance of devices. The proposed system will be the most advanced in the world, and will give UK researchers working on these hugely important photonic and electronic technologies a global advantage in developing new materials, devices and ultimately products.
该提案旨在为英国带来惊人的显微镜,该显微镜将为理解发光材料和设备的特性提供新的强大能力。这些材料是许多技术的关键,不仅可以直接利用材料发射光发射(例如基于发光二极管的能源有效的灯泡),而且还利用了许多其他设备,这些设备都利用了相同的材料家族(例如太阳能电池家族和电子设备)进行电源转换。这些技术中的一些是目前使用的,但是通过更好地了解相关材料,可以提高其效率和性能。其他目标技术离市场更远,但可能代表了我们未来的安全和繁荣的基础。例如,新的显微镜将提供有关光源的信息,这些光源可按需发射一个和仅发光的一个基本粒子(光子)。这样的“量子光源”是量子计算机的潜在构件和代表安全数据传输最终的量子加密方案。新的显微镜将如何允许我们推动所有这些技术的开发?它是基于扫描电子显微镜,该扫描电子显微镜利用出现在样品表面上的电子束以比使用标准光显微镜要实现的分辨率要好几乎三个数量级。因此,它可以访问纳米量表,这对于解决现代电子设备至关重要。标准电子显微镜可以访问表面的地形,但是传入的电子束也激发了所检查的材料中的某些电子,以较高的能量进行。当这些电子放松到通常的低能状态时,可能会发出光,并且该光的颜色和强度对正在检查的材料的特性非常有用。可以将这种光发射映射到约10纳米的尺度上,以便可以解决从缺陷到故意设计的量子对象的纳米级结构。该技术被称为阴极发光,已经使用了多年了。我们提出的系统的新能力不仅会绘制光发射的颜色和强度,而且还使我们能够测量电子在其上放松到其低能状态的时间表。我们使用“眨眼”一词来描述很快发生的事情。真正的眼睛眨眼至少需要100毫秒,而电子返回其低能状态的相关时间尺度可能比此更快地比这快了100亿倍!新的显微镜将能够通过解决电子脉冲激发光子发射的材料后的时间来测量在此时间尺度上发生的过程。它甚至能够区分不同时间尺度上发出不同波长(或颜色)的光子。至关重要的是,将这种时间分辨的能力与变化温度变化的能力结合在一起,我们将不仅能够推断电子放松到低能位点的时间尺度,还可以推断出发光光子的低能位点,还可以推断出电子通过其他非光线发射路线来减少其能量的时间尺度。例如,这些非光发射过程限制了发光二极管的效率。总体而言,在广泛的材料中,我们将建立对电子如何与纳米级结构相互作用的理解,以定义材料的电气和光学特性,从而限制或改善设备的性能。拟议的系统将是世界上最先进的系统,并将使英国研究人员在开发新材料,设备和最终产品方面具有全球优势。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Radiation effects in ultra-thin GaAs solar cells
- DOI:10.1063/5.0103381
- 发表时间:2022-11-14
- 期刊:
- 影响因子:3.2
- 作者:Barthel, A.;Sayre, L.;Hirst, L. C.
- 通讯作者:Hirst, L. C.
Cathodoluminescence Study of 68 MeV Proton-Irradiated Ultra-Thin GaAs Solar Cells
68 MeV 质子辐照超薄砷化镓太阳能电池的阴极发光研究
- DOI:10.1109/pvsc45281.2020.9300748
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Barthel A
- 通讯作者:Barthel A
Combined SEM-CL and STEM investigation of green InGaN quantum wells
- DOI:10.1088/1361-6463/abddf8
- 发表时间:2021-04-22
- 期刊:
- 影响因子:3.4
- 作者:Ding, B.;Jarman, J.;Oliver, R. A.
- 通讯作者:Oliver, R. A.
Stacking fault-associated polarized surface-emitted photoluminescence from zincblende InGaN/GaN quantum wells
- DOI:10.1063/5.0012131
- 发表时间:2020-07-20
- 期刊:
- 影响因子:4
- 作者:Church, S. A.;Ding, B.;Binks, D. J.
- 通讯作者:Binks, D. J.
Halide Homogenization for High-Performance Blue Perovskite Electroluminescence.
用于高性能蓝色钙钛矿电致发光的卤化物均质化
- DOI:10.34133/2020/9017871
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Cheng L;Yi C;Tong Y;Zhu L;Kusch G;Wang X;Wang X;Jiang T;Zhang H;Zhang J;Xue C;Chen H;Xu W;Liu D;Oliver RA;Friend RH;Zhang L;Wang N;Huang W;Wang J
- 通讯作者:Wang J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Oliver其他文献
MP89-10 OUTCOMES OF ELECTIVE URETEROSCOPY FOLLOWING RECENT UROSEPSIS AND EMERGENCY DRAINAGE RELATED TO STONE DISEASE: PROSPECTIVE RESULTS OVER 5-YEARS FROM A UNIVERSITY HOSPITAL.
- DOI:
10.1016/j.juro.2018.02.2950 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:
- 作者:
Amelia Pietropaolo;Patrick Jones;Robert Geraghty;Rachel Oliver;Bhaskar K Somani - 通讯作者:
Bhaskar K Somani
Macroplastique and Botox are superior to Macroplastique alone in the management of neurogenic vesicoureteric reflux in spinal cord injury population with presumed healthy bladders
Macroplastique 和 Botox 在治疗假定膀胱健康的脊髓损伤人群的神经源性膀胱输尿管反流方面优于单独使用 Macroplastique
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Vasileios I Sakalis;Rachel Oliver;Peter J Guy;Melissa C Davies - 通讯作者:
Melissa C Davies
A tissue-engineered approach to augmentation of the urinary bladder
- DOI:
10.1016/j.ijsu.2011.07.299 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:
- 作者:
Rachel Oliver;Maggie Glover;Linge Wang;Gwendolen Reilly;Derek Rosario - 通讯作者:
Derek Rosario
Event-based sensor multiple hypothesis tracker for space domain awareness
用于空间域感知的基于事件的传感器多假设跟踪器
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Rachel Oliver;Dmitry Savransky - 通讯作者:
Dmitry Savransky
Nonparametric Analysis of Non-Euclidean Data on Shapes and Images
形状和图像非欧几里得数据的非参数分析
- DOI:
10.1007/s13171-018-0127-9 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
R. Bhattacharya;Rachel Oliver - 通讯作者:
Rachel Oliver
Rachel Oliver的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Oliver', 18)}}的其他基金
Segregation of alloy and dopant atoms at defects in nitride materials
氮化物材料缺陷处合金和掺杂原子的偏析
- 批准号:
EP/Y004213/1 - 财政年份:2024
- 资助金额:
$ 357.81万 - 项目类别:
Research Grant
NP2: Hybrid Nanoparticle-Nanoporous nitride materials as a novel precision manufacture route to optoelectronic devices
NP2:混合纳米颗粒-纳米多孔氮化物材料作为光电器件的新型精密制造途径
- 批准号:
EP/X017028/1 - 财政年份:2022
- 资助金额:
$ 357.81万 - 项目类别:
Research Grant
Fast Switching Zincblende GaN LEDs
快速开关闪锌矿 GaN LED
- 批准号:
EP/W03557X/1 - 财政年份:2022
- 资助金额:
$ 357.81万 - 项目类别:
Research Grant
EPSRC-FNR Collaborative Proposal: Radiative Efficiency in Advanced Sulfide Chalcopyrites for Solar Cells (REACh)
EPSRC-FNR 合作提案:太阳能电池用先进硫化黄铜矿的辐射效率 (REACh)
- 批准号:
EP/V029231/1 - 财政年份:2021
- 资助金额:
$ 357.81万 - 项目类别:
Research Grant
Simulation software for modelling nitride-based quantum light sources
用于模拟氮化物量子光源的仿真软件
- 批准号:
EP/R04502X/1 - 财政年份:2018
- 资助金额:
$ 357.81万 - 项目类别:
Research Grant
Integration of RF Circuits with High Speed GaN Switching on Silicon Substrates
在硅衬底上集成射频电路与高速 GaN 开关
- 批准号:
EP/N017927/1 - 财政年份:2016
- 资助金额:
$ 357.81万 - 项目类别:
Research Grant
Beyond Blue: New Horizons in Nitrides (Platform Grant Renewal)
超越蓝色:氮化物的新视野(平台资助续订)
- 批准号:
EP/M010589/1 - 财政年份:2015
- 资助金额:
$ 357.81万 - 项目类别:
Research Grant
Non-polar nitride quantum dots for application in single photon sources
用于单光子源应用的非极性氮化物量子点
- 批准号:
EP/M011682/1 - 财政年份:2015
- 资助金额:
$ 357.81万 - 项目类别:
Research Grant
Study of semi-polar and non-polar nitride based structures for opto-electronic device applications
用于光电器件应用的半极性和非极性氮化物基结构的研究
- 批准号:
EP/J003603/1 - 财政年份:2012
- 资助金额:
$ 357.81万 - 项目类别:
Research Grant
相似国自然基金
从定性到定量:基于自然解决方案的长江口湿地后生态工程评价
- 批准号:32371621
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
出口转型视角下中国石墨产业全球价值链“低端锁定”破解策略研究
- 批准号:42301342
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
计算机辅助的协作问题解决中情感-社交-认知建模分析与引导促进
- 批准号:62377027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于超声单模态影像融合实时规划技术实现肝脏肿瘤热消融最优穿刺路径解决方案
- 批准号:82371986
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
身份冲突对消费者决策和行为的影响及机制研究
- 批准号:72302054
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Diffractometer for time-resolved in-situ high temperature powder diffraction and X-ray reflectivity
用于时间分辨原位高温粉末衍射和 X 射线反射率的衍射仪
- 批准号:
530760073 - 财政年份:2024
- 资助金额:
$ 357.81万 - 项目类别:
Major Research Instrumentation
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 357.81万 - 项目类别:
Standard Grant
CAREER: Tiny Drops of Acid: Microwave Spectroscopy and Isomer-resolved IR Spectroscopy of Hydrohalic Acid-Water Clusters
职业:微小的酸滴:氢卤酸-水簇的微波光谱和异构体分辨红外光谱
- 批准号:
2340303 - 财政年份:2024
- 资助金额:
$ 357.81万 - 项目类别:
Continuing Grant
Pump field probe magnetic field effect fluorescence microscopy for time-resolved radical pair detection in biological systems
用于生物系统中时间分辨自由基对检测的泵场探针磁场效应荧光显微镜
- 批准号:
23K26612 - 财政年份:2024
- 资助金额:
$ 357.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NSF Convergence Accelerator Track K: Spatially Resolved Solutions for Field to Regional Irrigation Water Management to Promote Equitable Sharing of Limited Water Resources
NSF 融合加速器轨道 K:田间到区域灌溉用水管理的空间解决方案,以促进有限水资源的公平共享
- 批准号:
2344487 - 财政年份:2024
- 资助金额:
$ 357.81万 - 项目类别:
Standard Grant