Development of nanopatterned substrates for the delivery of high quality stem cells

开发用于输送高质量干细胞的纳米图案基质

基本信息

  • 批准号:
    BB/K011235/1
  • 负责人:
  • 金额:
    $ 83.36万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The use of stem cells in regenerative medicine holds great potential and with an increasingly aging population, we need to look for new opportunities. Their potential use span from orthopaedic applications such as arthritis and osteoporosis to neurodegenerative disorders such as Parkinson's and Alzheimer's, to name a few. The body has a constant source of stem cells located in niches within the body. From a scientific and clinical point of view, one of the most exploited sources for adult stem cells is the bone marrow. The bone marrow is relatively easy to access and stem cells can be easily isolated from the extracted cell population.However, until recently, a major hurdle is that the stem cells cannot be cultured for extended periods in culture and maintain their regenerative potential (multipotent). The very potential of stem cells, that they can change into many different cell types and so help repair damage on demand, means that their profile (phenotype) is unstable in culture. Hence, as we culture stem cells they soon lose the very potential and potency we want to exploit. We have recently (2011) demonstrated that by culturing the cells on a uniquely nanopatterned surface (nanopits, 100 nm in diameter and 100 nm deep, arranged in a square lattice) it is indeed possible to keep the cells in the multipotent state in prolonged culture as well as expand the number of cells.These nanopatterned surfaces resemble the tracks on a Blu-Ray disc and indeed our technology is very similar to the production of optical media where nanopatterns can be injection moulded into polymer discs in high volumes and at a very low cost. We can change the arrangement of the nanopatterns, thereby tuning the stem cell response to growth without profile (phenotype) drift and to target desired changes to tissues we want (known as differentiation). This is has important implications on the design of implants (like a hip replacement implants) where a specific cell changes (differentiation) is desirable. An example of this is again, orthopaedic implants where differentiation of cells to bone is desirable, or an area with perhaps even more potential is the growth of large numbers of stem cells. Thus, a key research goal is to take a patient's stem cells, grow them in the laboratory to useful numbers, and then place them back into the patient to spark regeneration. Scale up of our technology will allow this. The technology we have used so far has only allowed us to explore the stem cell interaction to a very limited number of different geometries (<10). In this proposal we will develop a new platform where a single sample will contain 1000 different patterns thereby allowing us to investigate a much larger library of nanopatterns and their ability to influence the fate of the stem cells. From these libraries new patterns will be identified and we will investigate them in more detail using mass spectrometry to identify small molecules influencing the cell fate.Importantly, to see real benefit of these discoveries, it is vital that we are able to scale the materials used to large areas to sustain the growth and expansion of stem cells used for regenerative medicine or pharma. As described above, our technology is very similar to the production of DVDs and Blu-Rays, which means that it lends itself to a cost effective mass production of the nanopatterned surfaces. To demonstrate this potential, we will expand extracted bone marrow stem cells to 5 million cells, the number of cells used for the fully tissue engineered trachea demonstrated in 2008.
干细胞在再生医学中的使用具有巨大的潜力,并且随着人口越来越大的人口,我们需要寻找新的机会。它们的潜在使用范围从关节炎和骨质疏松症等骨科应用到神经退行性疾病,例如帕金森氏症和阿尔茨海默氏症。人体具有位于体内壁ni的干细胞的恒定来源。从科学和临床的角度来看,成年干细胞最被剥削的来源之一是骨髓。骨髓相对易于进入,可以很容易地将干细胞与提取的细胞群中分离出来。直到最近,一个主要的障碍是,培养物的长时间才能长期培养并保持其再生潜力(多能)。干细胞的潜力,它们可以变成许多不同的细胞类型,因此有助于根据需要修复损害,这意味着它们的概况(表型)在培养中是不稳定的。因此,随着我们培养干细胞,它们很快失去了我们想要利用的潜力和效力。我们最近(2011年)表明,通过在独特的纳米图表表面培养细胞(纳米木材,直径100 nm,直径为100 nm,深100 nm,在平方晶格中排列),可以使细胞保持多功能状态的延长培养物,并扩大了媒介的培养基数量。纳米模式可以以高体积的成本成型为聚合物盘,以非常低的成本模制。我们可以更改纳米模式的排列,从而调整干细胞对生长的反应而无需(表型)漂移(表型)漂移,并针对我们想要的组织(称为分化)的目标变化。这对植入物的设计(例如髋关节置换植入物)具有重要意义,其中特定的细胞变化(分化)是可取的。这是一个例子,是骨科植入物,其中细胞与骨骼的分化是可取的,或者可能更有潜力的区域是大量干细胞的生长。因此,一个关键的研究目标是将患者的干细胞在实验室中生长到有用的数字中,然后将其放回患者中以激发再生。扩展我们的技术将允许这一点。到目前为止,我们使用的技术仅允许我们探索干细胞相互作用,达到非常有限的不同几何形状(<10)。在此提案中,我们将开发一个新的平台,其中单个样本将包含1000种不同的模式,从而使我们能够研究更大的纳米图案库及其影响干细胞命运的能力。从这些图书馆中将确定新模式,我们将使用质谱法对它们进行更详细的调查,以识别影响细胞命运的小分子。大大提出,为了看到这些发现的真正好处,至关重要的是,至关重要的是,我们能够扩展用于维持用于恢复医学或药品的干细胞生长和扩展大面积的材料。如上所述,我们的技术与DVD和Blu-Ray的生产非常相似,这意味着它可以使其具有成本效益的纳米图案表面的批量生产。为了证明这一潜力,我们将将提取的骨髓干细胞扩展到500万个细胞,该细胞的数量用于2008年展示的全组织工程气管的细胞数量。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanotopography reveals metabolites that maintain the immunosuppressive phenotype of mesenchymal stem cells
  • DOI:
    10.1101/603332
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ewan Ross;L. Turner;A. Saeed;Karl E. V. Burgess;Gavin Blackburn;P. Reynolds;J. Wells;J. Mountford;N. Gadegaard;M. Salmerón-Sánchez;R. Oreffo;M. Dalby
  • 通讯作者:
    Ewan Ross;L. Turner;A. Saeed;Karl E. V. Burgess;Gavin Blackburn;P. Reynolds;J. Wells;J. Mountford;N. Gadegaard;M. Salmerón-Sánchez;R. Oreffo;M. Dalby
Enhanced Human-Induced Pluripotent Stem Cell Derived Cardiomyocyte Maturation Using a Dual Microgradient Substrate.
  • DOI:
    10.1021/acsbiomaterials.6b00426
  • 发表时间:
    2016-12-12
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Huethorst, E.;Hortigon, M.;Zamora-Rodriguez, V.;Reynolds, P. M.;Burton, F.;Smith, G.;Gadegaard, N.
  • 通讯作者:
    Gadegaard, N.
Current approaches for modulation of the nanoscale interface in the regulation of cell behavior.
Nanotopography controls cell cycle changes involved with skeletal stem cell self-renewal and multipotency.
  • DOI:
    10.1016/j.biomaterials.2016.11.032
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    14
  • 作者:
    Lee LC;Gadegaard N;de Andrés MC;Turner LA;Burgess KV;Yarwood SJ;Wells J;Salmeron-Sanchez M;Meek D;Oreffo RO;Dalby MJ
  • 通讯作者:
    Dalby MJ
Controlling fluid flow to improve cell seeding uniformity.
  • DOI:
    10.1371/journal.pone.0207211
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Reynolds PM;Holzmann Rasmussen C;Hansson M;Dufva M;Riehle MO;Gadegaard N
  • 通讯作者:
    Gadegaard N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nikolaj Gadegaard其他文献

Flexible Substrate is Key to Appropriate Contractile Behaviour of hiPSC Derived Cardiomyocytes
  • DOI:
    10.1016/j.bpj.2019.11.1831
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Eline Huethorst;Francis L. Burton;Nikolaj Gadegaard;Godfrey L. Smith
  • 通讯作者:
    Godfrey L. Smith

Nikolaj Gadegaard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nikolaj Gadegaard', 18)}}的其他基金

ForceBiology
原力生物学
  • 批准号:
    EP/Y033000/1
  • 财政年份:
    2024
  • 资助金额:
    $ 83.36万
  • 项目类别:
    Research Grant
Nanopatterned Human Liver BioChips for Drug Hepatotoxicity Screening
用于药物肝毒性筛选的纳米图案人肝脏生物芯片
  • 批准号:
    BB/L023571/1
  • 财政年份:
    2014
  • 资助金额:
    $ 83.36万
  • 项目类别:
    Research Grant
Bioactive orthopaedic implants using nanopatterned 3D materials
使用纳米图案 3D 材料的生物活性骨科植入物
  • 批准号:
    G1000842/1
  • 财政年份:
    2011
  • 资助金额:
    $ 83.36万
  • 项目类别:
    Research Grant
A tool for investigating cell-material interactions: surface chemical and topographical gradients
研究细胞-材料相互作用的工具:表面化学和地形梯度
  • 批准号:
    BB/E012256/1
  • 财政年份:
    2007
  • 资助金额:
    $ 83.36万
  • 项目类别:
    Research Grant

相似国自然基金

多元微纳米图案功能化表面的构建与应用
  • 批准号:
    22372111
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
瓶刷聚合物精准调控无机纳米粒子表面图案
  • 批准号:
    22372109
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
图案化诱导的心肌细胞纳米力学对心肌肥厚作用机制研究
  • 批准号:
    82302401
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于图案化微电极的多级电荷输运及低阻抗液滴摩擦纳米发电机
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
浸润性诱导胶体纳米粒子图案化组装
  • 批准号:
    22205077
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Superresolution and correlative microscopy to study cell adhesion on nanopatterned substrates
超分辨率和相关显微镜研究纳米图案基底上的细胞粘附
  • 批准号:
    1804171
  • 财政年份:
    2016
  • 资助金额:
    $ 83.36万
  • 项目类别:
    Studentship
Image Correlation Studies of Cellular Adhesion on Nanopatterned Substrates
纳米图案基底上细胞粘附的图像相关研究
  • 批准号:
    318787-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 83.36万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Image Correlation Studies of Cellular Adhesion on Nanopatterned Substrates
纳米图案基底上细胞粘附的图像相关研究
  • 批准号:
    318787-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 83.36万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Image Correlation Studies of Cellular Adhesion on Nanopatterned Substrates
纳米图案基底上细胞粘附的图像相关研究
  • 批准号:
    318787-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 83.36万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
POWRE: Biodegradable Micro and Nanopatterned Polymer Substrates for Nerve Regeneration
POWRE:用于神经再生的可生物降解的微米和纳米图案聚合物基底
  • 批准号:
    9973287
  • 财政年份:
    1999
  • 资助金额:
    $ 83.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了