Nanopatterned Human Liver BioChips for Drug Hepatotoxicity Screening

用于药物肝毒性筛选的纳米图案人肝脏生物芯片

基本信息

  • 批准号:
    BB/L023571/1
  • 负责人:
  • 金额:
    $ 26.37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Developing a human liver-on-a-chip device for rapid safety testing of drugsDrugs and over-the-counter medicines are very safe to take at normal dosage. Pharmaceutical companies spend billions of pounds ensuring newly developed drugs are safe. This process is extremely expensive because there are many steps involved in this assessment, e.g. testing for toxic side effects. Because the liver is the body's main processing factory for drugs, side effects on the liver a major focus of safety testing. Accodringly, before these 'candidate' drugs can proceed to early clinical trials in humans, scientists perform drug testing either in animals or in the laboratory - in culture dishes containing liver cells.These tests involve seeing if the drug is processed by the liver normally, without any side-effects, or if there is measurable damage to the liver tissue. The liver is the largest internal organ in the body, containing billions of specialized liver cells, called hepatocytes, which are responsible for over 500 metabolic and detoxification functions. Liver damage caused by toxic drug by-products can be very serious and even lead to death.The best liver cells to use in the lab for drug testing are normal human hepatocytes, isolated from donor human livers. Unfortunately the shortage of human donor organs means very few livers are available for this purpose. As such scientists are developing and exploiting other types of hepatocytes for use in the lab. Drug companies often use rodent hepatocytes for drug toxicity testing. However, due to differences between species, data from any drug toxic effects are not exactly the same as in human liver, potentially missing unsafe side-effects before human drug trials. In addition, human 'immortalized' cell lines are used (hepatocytes derived from sick liver tissue) which are very easy to grow and use for testing in the lab. However, again these cells do not function as healthy hepatocytes do in the liver and therefore, like animal liver data, can fail to predict potential drug-induced liver toxicity. Pharmaceutical companies are therefore constantly searching for other types of hepatocytes for use in drug toxicity testing.In our project, we will use a novel type of human liver cell line called 'HepaRG'. These cells are special because they form two types of liver cells in lab culture dishes: Hepatocytes plus supporting cells called 'cholangiocytes'. This is very important since as in your own liver, hepatocytes perform best when they are in contact with their neighbours. This actually allows HepaRG cells to perform many biochemical and detoxification functions very similar to the normal human hepatocytes mentioned earlier.Our main aim in this project is to use HepaRG cells to develop a human 'liver-on-a-chip' device for rapid safety testing of drugs. Scientists know that in the liver, hepatocytes actually respond also to their microscopic environment - even at the nanoscale (one millionth of the thickness of a human hair) - to function better. In our lab, we have shown that cells cultured on special 'nano-patterned' culture slides respond to this environment by changing or even improving their functional properties or rate of growth.Using different nano-scale patterns we will test many slides to find the pattern which best supports and improves hepatocyte function and appearance. Using the best, or optimal nano-patterned slides, we will then test these using a range of drugs, which are known to be toxic to the liver, to see if they respond in a manner similar to normal human hepatocytes.Using this information, will then allow us to combine the best nano-patterns into a novel 'BioChip' device, which is compatible with rapid (robotic) drug toxicity testing using special automated cell imaging techniques. Liver BioChips could then be used to test drug safety, reduce drug development costs and specifically reduce the use of animals in drug research.
开发用于快速安全测试药物安全性的人体肝脏芯片设备药物和非处方药在正常剂量下服用非常安全。制药公司花费数十亿英镑确保新开发药物的安全。这个过程非常昂贵,因为此评估涉及许多步骤,例如测试毒副作用。由于肝脏是人体主要的药物加工厂,因此对肝脏的副作用成为安全性检测的一大焦点。因此,在这些“候选”药物进入人体早期临床试验之前,科学家们要么在动物身上,要么在实验室中——在含有肝细胞的培养皿中进行药物测试。这些测试包括观察肝脏是否正常处理药物,没有任何副作用,或者对肝组织有明显的损害。肝脏是体内最大的内脏器官,含有数十亿个称为肝细胞的特殊肝细胞,负责 500 多种代谢和解毒功能。有毒药物副产物引起的肝损伤可能非常严重,甚至导致死亡。实验室中用于药物测试的最佳肝细胞是从供体人类肝脏中分离出来的正常人肝细胞。不幸的是,人类捐赠器官的短缺意味着很少有肝脏可用于此目的。因此,科学家们正在开发和利用其他类型的肝细胞以供实验室使用。制药公司经常使用啮齿动物肝细胞进行药物毒性测试。然而,由于物种之间的差异,任何药物毒性作用的数据与人体肝脏中的数据并不完全相同,可能会在人体药物试验之前遗漏不安全的副作用。此外,还使用人类“永生化”细胞系(源自患病肝脏组织的肝细胞),这些细胞非常容易生长并用于实验室测试。然而,这些细胞在肝脏中的功能与健康肝细胞的功能不同,因此,与动物肝脏数据一样,可能无法预测潜在的药物引起的肝脏毒性。因此,制药公司不断寻找其他类型的肝细胞用于药物毒性测试。在我们的项目中,我们将使用一种名为“HepaRG”的新型人类肝细胞系。这些细胞很特殊,因为它们在实验室培养皿中形成两种类型的肝细胞:肝细胞加上称为“胆管细胞”的支持细胞。这非常重要,因为就像在您自己的肝脏中一样,肝细胞在与邻居接触时表现最佳。这实际上使得HepaRG细胞能够执行许多与前面提到的正常人类肝细胞非常相似的生化和解毒功能。我们在这个项目中的主要目标是利用HepaRG细胞开发一种人类“芯片肝脏”装置,以实现快速安全药物测试。科学家们知道,在肝脏中,肝细胞实际上也会对其微观环境做出反应——即使是在纳米尺度(人类头发厚度的百万分之一)——以更好地发挥功能。在我们的实验室中,我们已经证明,在特殊的“纳米图案”培养载玻片上培养的细胞通过改变甚至改善其功能特性或生长速率来响应这种环境。使用不同的纳米级图案,我们将测试许多载玻片以找到最能支持和改善肝细胞功能和外观的模式。使用最好或最佳的纳米图案载玻片,然后我们将使用一系列已知对肝脏有毒的药物进行测试,看看它们是否以类似于正常人类肝细胞的方式做出反应。利用这些信息,然后,我们将能够将最好的纳米图案结合到新型“生物芯片”设备中,该设备与使用特殊自动细胞成像技术的快速(机器人)药物毒性测试兼容。肝脏生物芯片可用于测试药物安全性,降低药物开发成本,特别是减少药物研究中动物的使用。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Oxygen Plasma Substrate and Specific Nanopattern Promote Early Differentiation of HepaRG Progenitors.
氧等离子体底物和特定纳米图案促进 HepaRG 祖细胞的早期分化。
  • DOI:
    10.1089/ten.tea.2019.0241
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Morgan K
  • 通讯作者:
    Morgan K
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nikolaj Gadegaard其他文献

Nikolaj Gadegaard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nikolaj Gadegaard', 18)}}的其他基金

ForceBiology
原力生物学
  • 批准号:
    EP/Y033000/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Research Grant
Development of nanopatterned substrates for the delivery of high quality stem cells
开发用于输送高质量干细胞的纳米图案基质
  • 批准号:
    BB/K011235/1
  • 财政年份:
    2013
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Research Grant
Bioactive orthopaedic implants using nanopatterned 3D materials
使用纳米图案 3D 材料的生物活性骨科植入物
  • 批准号:
    G1000842/1
  • 财政年份:
    2011
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Research Grant
A tool for investigating cell-material interactions: surface chemical and topographical gradients
研究细胞-材料相互作用的工具:表面化学和地形梯度
  • 批准号:
    BB/E012256/1
  • 财政年份:
    2007
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Research Grant

相似国自然基金

CBFβ在结直肠癌肝转移中的功能和机制研究
  • 批准号:
    31900458
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
HLA-DR限制性HBV表位介导慢加急性肝衰竭患者CD4+T细胞活化的机制研究
  • 批准号:
    81900579
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
创建精准模拟人类肝脏CYPs生理行为的酵母人工肝
  • 批准号:
    31872729
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于人类白细胞抗原HLA-B*35:01的何首乌肝毒性物质基础研究
  • 批准号:
    81803837
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
人乳头瘤病毒抑制肝激酶B1的分子机制研究
  • 批准号:
    81772924
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

Gain-of-function toxicity in alpha-1 antitrypsin deficient type 2 alveolar epithelial cells
α-1 抗胰蛋白酶缺陷型 2 型肺泡上皮细胞的功能获得毒性
  • 批准号:
    10751760
  • 财政年份:
    2024
  • 资助金额:
    $ 26.37万
  • 项目类别:
Bilirubin Catabolism induces Plasminogen-Activator Inhibitor 1 (PAI-1) worsening Metabolic Dysfunction
胆红素分解代谢诱导纤溶酶原激活剂抑制剂 1 (PAI-1) 恶化代谢功能障碍
  • 批准号:
    10750132
  • 财政年份:
    2024
  • 资助金额:
    $ 26.37万
  • 项目类别:
Development of a novel human NASH model using human iPS cell-derived liver organoids
使用人类 iPS 细胞衍生的肝脏类器官开发新型人类 NASH 模型
  • 批准号:
    23K08025
  • 财政年份:
    2023
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regulation of prostate organogenesis by tissue-resident macrophages
组织驻留巨噬细胞对前列腺器官发生的调节
  • 批准号:
    10555589
  • 财政年份:
    2023
  • 资助金额:
    $ 26.37万
  • 项目类别:
Biological validation of human liver somatic mutations
人类肝脏体细胞突变的生物学验证
  • 批准号:
    MR/X019500/1
  • 财政年份:
    2023
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了