Preventing Medication Mismanagement in People Living with Dementia through Automated Medication Dispensing with Facial Recognition and Video Observation
通过面部识别和视频观察自动配药,防止痴呆症患者用药管理不善
基本信息
- 批准号:10461514
- 负责人:
- 金额:$ 44.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountabilityActivities of Daily LivingAddressAdherenceAlzheimer&aposs DiseaseArtificial IntelligenceAutomationCaregiver BurdenCaregiversCaringCellular PhoneClinicComplexConsumptionDementiaDementia caregiversDevelopmentDevicesDiseaseDoseElderlyEmergency department visitEnsureFaceFamilyFeedbackGoalsHealthHealth Care CostsHomeHospitalizationIncidenceIndividualIngestionIntuitionLabelLeadLegal patentManualsMedicalMedication ManagementModelingMonitorNursing HomesOutcomePatient CarePatient RightsPatientsPerformancePersonsPharmaceutical PreparationsPhasePilot ProjectsPopulationProtocols documentationProviderReportingRightsRisk FactorsRouteSalesScheduleSecureSerious Adverse EventSmall Business Innovation Research GrantSorting - Cell MovementStreamSystemTarget PopulationsTechnologyTestingTimeUpdateValidationadverse drug reactionage relatedaging in placebasecognitive functioncomorbiditycompliance behaviorcostdashboarddesigndosageexecutive functionhealth care service utilizationhospital readmissionimprovedinnovationinstrumental activity of daily livingmachine visionmedication administrationmedication nonadherencenew technologynovelpreventprototypesensorsmartphone Applicationsocioeconomic disparitysoftware as a servicesuccesstooltrendusability
项目摘要
Globally, over 47 million individuals are living with dementia, with new incidence of 7.7 million annually.
Medication mismanagement is one of the most common and concerning risk factors in people with dementia
(PwD), as it leads to undertreatment of disease, emergency department visits, hospital admissions/readmissions,
and serious adverse events. In the U.S. an estimated 3 million older adults are admitted to nursing homes due
to drug-related adherence problems with annual cost exceeding $14 billion. The challenge is complex medication
management requires moderate executive functioning. However, as cognitive function declines, PwD can no
longer perform such Instrumental Activities of Daily Living (IADLs) safely, effectively, and independently. While
the goal is to keep older adults at home as long as possible, caregivers are not available 24/7 & costs of external
care are often prohibitive.
The HiDO platform will solve these market challenges by automating medication administration for PwD to
eliminate mismanagement, decrease caregiver burden, reduce healthcare utilization and facilitate the ability for
PwD to age in place. While still premarket, HiDO is being designed and validated as an automated, AI driven
medication dispensing and direct observation platform to optimize adherence. The innovative device integrates
medication dispensing, dose administration time, medication synchronization, and a pair of front-facing video
cameras to validate the right medications, the right route, right time, right dosage to the right patient (5R’s). The
cameras record every dose using facial recognition & provide real-time medication consumption recordings for
medical review if needed by monitoring the time a patient interacts with the device. Through cloud connectivity,
providers & caregivers have access to video observation logs, dose administration time, adherence trends, &
longitudinal adherence through the platform’s dashboard. Patients & caregivers can easily setup complex
medication protocols in minutes using a smartphone app. The device then alerts patients and dispenses up to 7
different types of meds simultaneously, with up to 40 doses each.
The fully commercialized HiDO platform will integrate the full feature suite above. However, to demonstrate
feasibility, Phase I will target an in-clinic usability study, platform enhancements & novel AI to confirm ingestion,
and remote pilot study to document independent usability & adherence in PwD. An existing prototype HiDO
platform, which already integrates facial recognition AI, will be leveraged as a base technology to increase
likelihood of project success. First, using the existing prototype we will complete an in-clinic usability study to
validate use cases and product features in the target population. The existing platform will then be enhanced
with machine vision AI to confirm medication ingestion, as well as updates to address challenges found in early
usability. Once the enhanced platform has been technically verified, it will be deployed in a remote field usability
study with PwD and caregivers.
全球有超过 4700 万人患有痴呆症,每年新发痴呆症人数为 770 万。
药物管理不当是痴呆症患者最常见且令人担忧的风险因素之一
(残疾人),因为它会导致疾病治疗不足、急诊就诊、入院/再入院,
在美国,估计有 300 万老年人因这些原因被送进疗养院。
与药物相关的依从性问题,每年花费超过 140 亿美元,挑战在于复杂的药物治疗。
管理需要适度的执行功能,然而,随着认知功能的下降,残疾人无法做到这一点。
更长时间地安全、有效、独立地执行此类工具性日常生活活动 (IADL)。
目标是让老年人尽可能长时间呆在家里,护理人员无法 24/7 全天候提供服务以及外部费用
护理常常令人望而却步。
HiDO 平台将通过自动化残疾人药物管理来解决这些市场挑战
消除管理不善,减轻护理人员负担,减少医疗保健利用率并促进能力
虽然仍处于上市前状态,但 HiDO 正在被设计和验证为自动化、人工智能驱动的。
该创新设备集成了药物分配和直接观察平台,以优化依从性。
药物分配、给药时间、药物同步和一对前置视频
摄像头可验证对正确患者的正确药物、正确途径、正确时间和正确剂量(5R)。
摄像头使用面部识别记录每次剂量,并提供实时药物消耗记录
如果需要,可以通过云连接监控患者与设备交互的时间进行医疗审查,
提供者和护理人员可以访问视频观察日志、给药时间、依从趋势等
患者和护理人员可以通过平台的仪表板轻松设置复杂的纵向依从性。
使用智能手机应用程序在几分钟内即可完成药物治疗方案,然后该设备会提醒患者并分配最多 7 个药物。
同时使用不同类型的药物,每种药物最多 40 剂。
完全商业化的 HiDO 平台将集成上述完整功能套件,以进行演示。
可行性,第一阶段将针对临床可用性研究、平台增强和新颖的人工智能来确认摄入,
以及远程试点研究,以记录 PwD 现有原型 HiDO 的独立可用性和依从性。
该平台已经集成了面部识别人工智能,将作为基础技术来增加
首先,我们将使用现有原型完成临床可用性研究。
然后在目标人群中验证用例和产品功能,然后将增强现有平台。
使用机器视觉人工智能来确认药物摄入,并进行更新以解决早期发现的挑战
一旦增强的平台经过技术验证,它将被部署在远程现场可用性。
与残疾人士和护理人员一起学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Gellman其他文献
Charles Gellman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Gellman', 18)}}的其他基金
Automated Medication Platform with Video Observation and Facial Recognition to Improve Adherence to Antiretroviral Therapy in Patients with HIV/AIDS
具有视频观察和面部识别功能的自动化用药平台,可提高艾滋病毒/艾滋病患者抗逆转录病毒治疗的依从性
- 批准号:
10256239 - 财政年份:2022
- 资助金额:
$ 44.96万 - 项目类别:
相似国自然基金
老年期痴呆患者基础性日常生活活动能力损害的认知神经心理学基础及测量优化
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于VR技术的养老机构老年人ADL康复训练和评估量化体系构建及应用研究
- 批准号:81902295
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Wicked Smart Pad: Washable Sensorized Bedding for the Prevention and Detection of Moisture Events
Wicked Smart Pad:可清洗的感应床上用品,用于预防和检测潮湿事件
- 批准号:
10601816 - 财政年份:2023
- 资助金额:
$ 44.96万 - 项目类别:
Genetic and Non-Genetic Modulators of Morbidity/Disability Compression in a Large Population-Based Study of Cognitive and Physical Impairment with Emphasis on Alzheimer's Disease and Related Dementias
在一项基于大规模人群的认知和身体损伤研究中,发病率/残疾压缩的遗传和非遗传调节剂,重点是阿尔茨海默氏病和相关痴呆症
- 批准号:
10378773 - 财政年份:2020
- 资助金额:
$ 44.96万 - 项目类别:
Genetic and Non-Genetic Modulators of Morbidity/Disability Compression in a Large Population-Based Study of Cognitive and Physical Impairment with Emphasis on Alzheimer's Disease and Related Dementias
在一项基于大规模人群的认知和身体损伤研究中,发病率/残疾压缩的遗传和非遗传调节剂,重点是阿尔茨海默氏病和相关痴呆症
- 批准号:
9913288 - 财政年份:2020
- 资助金额:
$ 44.96万 - 项目类别:
Genetic and Non-Genetic Modulators of Morbidity/Disability Compression in a Large Population-Based Study of Cognitive and Physical Impairment with Emphasis on Alzheimer's Disease and Related Dementias
在一项基于大规模人群的认知和身体损伤研究中,发病率/残疾压缩的遗传和非遗传调节剂,重点是阿尔茨海默氏病和相关痴呆症
- 批准号:
10608996 - 财政年份:2020
- 资助金额:
$ 44.96万 - 项目类别:
Mealtime Partnerships for People with Dementia in Respite Centers and at Home
在暂托中心和家里为痴呆症患者提供进餐合作
- 批准号:
9311407 - 财政年份:2017
- 资助金额:
$ 44.96万 - 项目类别: