Craniofacial skeletal cell lineage plasticity for reconstituting stem cells and their niches
颅面骨骼细胞谱系可塑性用于重建干细胞及其生态位
基本信息
- 批准号:10565884
- 负责人:
- 金额:$ 43.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAdultAllelesAlveolar Bone LossBar CodesCRISPR screenCartilageCell Differentiation processCell LineCell LineageCell TherapyCellsCementoblastChondrocytesDedicationsDefectDeformityDentalDental SacDevelopmentEpiphysial cartilageEventFibroblastsFunctional RegenerationFutureGenesGrowthIn VitroLifeLigatureMasticationMesenchymal Stem CellsModelingMolecularNatural regenerationPeriodontal DiseasesPeriodontal LigamentPeriodontitisPeriodontiumPhasePhysiologic OssificationPlayRecoveryRegenerative capacityReportingResolutionRestRoleSkeletal DevelopmentSlideSourceSurfaceSurgical suturesTechnologyTestingTimeTissuesTooth root structureTooth structurebonecell motilitycomparativecraniofacialdevelopmental plasticityepigenomicsexperimental studyin vivoinnovationinsightmineralizationoverexpressionparathyroid hormone-related proteinpostnatalreconstitutionskeletalskeletal tissueskull basestem cell nichestem cellstranscriptome sequencingtranscriptomicsvector
项目摘要
PROJECT SUMMARY/ABSTRACT
The craniofacial skeletal tissues are composed of multiple functional units, encompassing both mineralized and
non-mineralized components. The non-mineralized tissues, such as sutures, cranial base synchondroses and
periodontal ligaments, exist between mineralized tissues, and play important roles in craniofacial growth and
regeneration by providing a niche for tissue-specific stem cells in postnatal life. Current cell-based therapies
cannot effectively reconstitute stem cell niches; as a result, recovery of devastating skeletal conditions such as
craniofacial deformities and advanced alveolar bone loss associated with periodontal diseases has not been
made possible to date. Functional regeneration of craniofacial skeletal tissues requires an innovative approach
to reestablish inherent stem cells and their supporting niches. In this proposal, we aim to define molecular and
cellular mechanisms underlying developmental plasticity of the craniofacial skeletal lineage and explore the
possibility to apply these mechanisms to enhance endogenous regeneration capacity. We hypothesize that
functionally dedicated cells of the postnatal craniofacial skeletal cell lineage can reconstitute tissue-specific
stem cells and their supporting niches through lineage plasticity. We will test this hypothesis using a
combination of in vivo clonal lineage-tracing and single-cell and spatial transcriptomic approaches to unravel
fundamental molecular and cellular events associated with formation of stem cells and their stem cell niche.
We will focus on two models of the cranial base synchondrosis and the periodontium to investigate
developmental craniofacial skeletal lineage plasticity. In Aim 1, we will characterize plasticity of Runx2+
perichondrial cells in establishing the cranial base synchondrosis niche. We hypothesize Runx2+ perichondrial
fibroblasts generate both stem cells and their niches within postnatal synchondroses through developmental
plasticity. We will use a combination of cell-lineage tracing experiments and single-cell transcriptomic analyses,
high-resolution spatial transcriptomic analysis and CRISPR screens using the feature barcoding technology to
define molecular mechanisms underlying developmental plasticity and stem cell-generating potential of Runx2+
perichondrial cells of the postnatal synchondrosis. In Aim 2, we will explore the possibility to reactivate PTHrP+
cementoblasts to regenerate functional periodontal attachment apparatus. We hypothesize that PTHrP+
cementoblasts on the adult root surface retain a dental follicle (DF) cell-like state, and can be experimentally
reverted to dental root mesenchymal progenitor cells. We will use a combination of cell-lineage tracing
experiments, single-cell and bulk transcriptomic and epigenomic analyses to define how PTHrP+
cementoblasts are related to PTHrP+ DF cells, and change their molecular identities during periodontal
destruction and regeneration. We will also examine whether PTHrP overexpression is sufficient to revert
mature skeletal cells to a mesenchymal progenitor-like state at a post-growth phase, as a proof-of-principle
study to test the applicability of developmental lineage plasticity to adult stages.
项目概要/摘要
颅面骨骼组织由多个功能单元组成,包括矿化和
非矿化成分。非矿化组织,如缝线、颅底软骨组织和
牙周膜存在于矿化组织之间,在颅面生长和发育过程中发挥着重要作用。
通过为出生后的组织特异性干细胞提供一个利基来实现再生。当前基于细胞的疗法
不能有效地重建干细胞生态位;结果,破坏性骨骼状况的恢复,例如
与牙周疾病相关的颅面畸形和晚期牙槽骨丢失尚未得到证实
迄今为止成为可能。颅面骨骼组织的功能再生需要创新方法
重建固有的干细胞及其支持生态位。在本提案中,我们的目标是定义分子和
颅面骨骼谱系发育可塑性的细胞机制并探索
应用这些机制来增强内源性再生能力的可能性。我们假设
出生后颅面骨骼细胞谱系的功能专用细胞可以重建组织特异性
干细胞及其通过谱系可塑性的支持生态位。我们将使用
结合体内克隆谱系追踪与单细胞和空间转录组学方法来解开谜团
与干细胞及其干细胞生态位形成相关的基本分子和细胞事件。
我们将重点研究颅底软骨联合和牙周组织的两种模型
发育性颅面骨骼谱系可塑性。在目标 1 中,我们将表征 Runx2+ 的可塑性
软骨膜细胞建立颅底软骨联合生态位。我们假设 Runx2+ 软骨膜
成纤维细胞通过发育过程产生干细胞及其在出生后软骨细胞内的生态位
可塑性。我们将结合使用细胞谱系追踪实验和单细胞转录组分析,
使用特征条形码技术进行高分辨率空间转录组分析和 CRISPR 筛选
定义 Runx2+ 发育可塑性和干细胞生成潜力的分子机制
产后软骨病的软骨膜细胞。在目标 2 中,我们将探索重新激活 PTHrP+ 的可能性
成牙骨质细胞再生功能性牙周附着装置。我们假设 PTHrP+
成年牙根表面的成牙骨质细胞保留牙囊(DF)细胞样状态,并且可以通过实验
恢复为牙根间充质祖细胞。我们将结合使用细胞谱系追踪
实验、单细胞和批量转录组和表观基因组分析来定义 PTHrP+
成牙骨质细胞与 PTHrP+ DF 细胞相关,并在牙周期间改变其分子特性
破坏和再生。我们还将检查 PTHrP 过度表达是否足以恢复
将成熟的骨骼细胞在生长后阶段转变为间充质祖细胞样状态,作为原理验证
研究测试发育谱系可塑性对成年阶段的适用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noriaki Ono其他文献
Noriaki Ono的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Noriaki Ono', 18)}}的其他基金
Dynamics and Regulations of Bone Stem Cells in Vivo
体内骨干细胞的动力学和调控
- 批准号:
10477641 - 财政年份:2022
- 资助金额:
$ 43.58万 - 项目类别:
Craniofacial skeletal cell lineage plasticity for reconstituting stem cells and their niches
颅面骨骼细胞谱系可塑性用于重建干细胞及其生态位
- 批准号:
10490623 - 财政年份:2022
- 资助金额:
$ 43.58万 - 项目类别:
Craniofacial skeletal cell lineage plasticity for reconstituting stem cells and their niches
颅面骨骼细胞谱系可塑性用于重建干细胞及其生态位
- 批准号:
10210707 - 财政年份:2021
- 资助金额:
$ 43.58万 - 项目类别:
Dynamics and Regulation of Bone Stem Cells in vivo - Supplement Proposal
体内骨干细胞的动力学和调节 - 补充提案
- 批准号:
9895953 - 财政年份:2019
- 资助金额:
$ 43.58万 - 项目类别:
Stem/progenitor cells of the chondrocyte and osteoblast lineage in vivo
体内软骨细胞和成骨细胞谱系的干细胞/祖细胞
- 批准号:
8895296 - 财政年份:2014
- 资助金额:
$ 43.58万 - 项目类别:
Stem/progenitor cells of the chondrocyte and osteoblast lineage in vivo
体内软骨细胞和成骨细胞谱系的干细胞/祖细胞
- 批准号:
8848446 - 财政年份:2014
- 资助金额:
$ 43.58万 - 项目类别:
Stem/progenitor cells of the chondrocyte and osteoblast lineage in vivo
体内软骨细胞和成骨细胞谱系的干细胞/祖细胞
- 批准号:
8279758 - 财政年份:2012
- 资助金额:
$ 43.58万 - 项目类别:
Stem/progenitor cells of the chondrocyte and osteoblast lineage in vivo
体内软骨细胞和成骨细胞谱系的干细胞/祖细胞
- 批准号:
8418734 - 财政年份:2012
- 资助金额:
$ 43.58万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
In vivo precision genome editing to correct genetic disease
体内精准基因组编辑以纠正遗传疾病
- 批准号:
10771419 - 财政年份:2023
- 资助金额:
$ 43.58万 - 项目类别:
Impact of SARS-CoV-2 infection on respiratory viral immune responses in children with and without asthma
SARS-CoV-2 感染对患有和不患有哮喘的儿童呼吸道病毒免疫反应的影响
- 批准号:
10568344 - 财政年份:2023
- 资助金额:
$ 43.58万 - 项目类别:
Reprogramming adult murine Müller glia via L-Myc expression
通过 L-Myc 表达对成年小鼠 Müller 胶质细胞进行重编程
- 批准号:
10751295 - 财政年份:2023
- 资助金额:
$ 43.58万 - 项目类别:
Assessing Sox 10's effect on chromatin accessibility in enteric neuron lineage diversification
评估 Sox 10 对肠神经元谱系多样化中染色质可及性的影响
- 批准号:
10749740 - 财政年份:2023
- 资助金额:
$ 43.58万 - 项目类别: