Craniofacial skeletal cell lineage plasticity for reconstituting stem cells and their niches
颅面骨骼细胞谱系可塑性用于重建干细胞及其生态位
基本信息
- 批准号:10210707
- 负责人:
- 金额:$ 49.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAdultAllelesAlveolar Bone LossBar CodesCRISPR screenCartilageCell Differentiation processCell LineCell LineageCell TherapyCellsCementoblastChondrocytesDefectDeformityDentalDental SacDevelopmentEpiphysial cartilageEventFibroblastsFutureGenesGrowthIn VitroLifeLigatureMasticationMesenchymal Stem CellsMineralsModelingMolecularNatural regenerationPeriodontal DiseasesPeriodontal LigamentPeriodontitisPeriodontiumPhasePhysiologic OssificationPlant RootsPlayRecoveryRegenerative capacityReportingResolutionRestRoleSkeletal DevelopmentSlideSourceSurfaceSurgical suturesTechnologyTestingTimeTissuesTooth root structureTooth structurebasebonecell motilitycomparativecraniofacialdevelopmental plasticityepigenomicsexperimental studyin vivoinnovationinsightoverexpressionparathyroid hormone-related proteinpostnatalreconstitutionskeletalskeletal tissueskull basestem cell nichestem cellstranscriptome sequencingtranscriptomicsvector
项目摘要
PROJECT SUMMARY/ABSTRACT
The craniofacial skeletal tissues are composed of multiple functional units, encompassing both mineralized and
non-mineralized components. The non-mineralized tissues, such as sutures, cranial base synchondroses and
periodontal ligaments, exist between mineralized tissues, and play important roles in craniofacial growth and
regeneration by providing a niche for tissue-specific stem cells in postnatal life. Current cell-based therapies
cannot effectively reconstitute stem cell niches; as a result, recovery of devastating skeletal conditions such as
craniofacial deformities and advanced alveolar bone loss associated with periodontal diseases has not been
made possible to date. Functional regeneration of craniofacial skeletal tissues requires an innovative approach
to reestablish inherent stem cells and their supporting niches. In this proposal, we aim to define molecular and
cellular mechanisms underlying developmental plasticity of the craniofacial skeletal lineage and explore the
possibility to apply these mechanisms to enhance endogenous regeneration capacity. We hypothesize that
functionally dedicated cells of the postnatal craniofacial skeletal cell lineage can reconstitute tissue-specific
stem cells and their supporting niches through lineage plasticity. We will test this hypothesis using a
combination of in vivo clonal lineage-tracing and single-cell and spatial transcriptomic approaches to unravel
fundamental molecular and cellular events associated with formation of stem cells and their stem cell niche.
We will focus on two models of the cranial base synchondrosis and the periodontium to investigate
developmental craniofacial skeletal lineage plasticity. In Aim 1, we will characterize plasticity of Runx2+
perichondrial cells in establishing the cranial base synchondrosis niche. We hypothesize Runx2+ perichondrial
fibroblasts generate both stem cells and their niches within postnatal synchondroses through developmental
plasticity. We will use a combination of cell-lineage tracing experiments and single-cell transcriptomic analyses,
high-resolution spatial transcriptomic analysis and CRISPR screens using the feature barcoding technology to
define molecular mechanisms underlying developmental plasticity and stem cell-generating potential of Runx2+
perichondrial cells of the postnatal synchondrosis. In Aim 2, we will explore the possibility to reactivate PTHrP+
cementoblasts to regenerate functional periodontal attachment apparatus. We hypothesize that PTHrP+
cementoblasts on the adult root surface retain a dental follicle (DF) cell-like state, and can be experimentally
reverted to dental root mesenchymal progenitor cells. We will use a combination of cell-lineage tracing
experiments, single-cell and bulk transcriptomic and epigenomic analyses to define how PTHrP+
cementoblasts are related to PTHrP+ DF cells, and change their molecular identities during periodontal
destruction and regeneration. We will also examine whether PTHrP overexpression is sufficient to revert
mature skeletal cells to a mesenchymal progenitor-like state at a post-growth phase, as a proof-of-principle
study to test the applicability of developmental lineage plasticity to adult stages.
项目摘要/摘要
颅面骨骼组织由多个功能单元组成,包括矿化和
非矿化组件。非矿化组织,例如缝合线,颅底同步性和
牙周韧带存在于矿化组织之间,并在颅面生长和
通过在产后生活中提供组织特异性干细胞的利基来再生。当前基于细胞的疗法
无法有效地重建干细胞生态位;结果,恢复毁灭性骨骼条件(例如
颅面畸形和与牙周疾病有关的晚期牙槽骨质流失尚未
尽可能成为可能。颅面骨骼组织的功能再生需要一种创新的方法
重新建立固有的干细胞及其支持的壁ni。在此提案中,我们旨在定义分子和
颅面骨骼谱系的发育可塑性的基础机制,并探索
应用这些机制来增强内源性再生能力的可能性。我们假设这一点
产后颅面骨骼细胞谱系的功能专用细胞可以重建组织特异性的细胞
干细胞及其通过谱系可塑性的支撑壁细分。我们将使用
体内克隆谱系跟踪以及单细胞和空间转录方法的结合
与干细胞及其干细胞生态位的形成有关的基本分子和细胞事件。
我们将重点介绍两个颅底同步症的模型和牙周研究
发育性颅面骨骼谱系可塑性。在AIM 1中,我们将表征Runx2+的可塑性
围骨细胞在建立颅底同步孢子虫生境中。我们假设runx2+ perichondrial
成纤维细胞通过发育产生产后同步性的干细胞及其壁ni
可塑性。我们将结合细胞训练示踪实验和单细胞转录组分析的组合,即
高分辨率的空间转录组分析和CRISPR屏幕使用功能条形码技术
定义runx2+的发育可塑性和干细胞产生潜力的分子机制
产后同步症的per骨细胞。在AIM 2中,我们将探索重新激活PTHRP+的可能性
胶质细胞可再生功能性牙周附着设备。我们假设PTHRP+
成年根表面上的胶质细胞保留牙卵泡(DF)细胞状状态,并且可以在实验上进行
恢复为牙根间充质祖细胞。我们将结合细胞训练跟踪
实验,单细胞和批量转录组和表观基因组分析,以定义PTHRP+如何定义
水泥细胞与PTHRP+ DF细胞有关,并在牙周上改变其分子身份
破坏和再生。我们还将检查PTHRP过表达是否足以恢复
成熟的骨骼细胞在生长后阶段,以骨质祖细胞状状态,作为原则证明
研究以测试发展谱系可塑性对成人阶段的适用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noriaki Ono其他文献
Noriaki Ono的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Noriaki Ono', 18)}}的其他基金
Dynamics and Regulations of Bone Stem Cells in Vivo
体内骨干细胞的动力学和调控
- 批准号:
10477641 - 财政年份:2022
- 资助金额:
$ 49.19万 - 项目类别:
Craniofacial skeletal cell lineage plasticity for reconstituting stem cells and their niches
颅面骨骼细胞谱系可塑性用于重建干细胞及其生态位
- 批准号:
10565884 - 财政年份:2022
- 资助金额:
$ 49.19万 - 项目类别:
Craniofacial skeletal cell lineage plasticity for reconstituting stem cells and their niches
颅面骨骼细胞谱系可塑性用于重建干细胞及其生态位
- 批准号:
10490623 - 财政年份:2022
- 资助金额:
$ 49.19万 - 项目类别:
Dynamics and Regulation of Bone Stem Cells in vivo - Supplement Proposal
体内骨干细胞的动力学和调节 - 补充提案
- 批准号:
9895953 - 财政年份:2019
- 资助金额:
$ 49.19万 - 项目类别:
Stem/progenitor cells of the chondrocyte and osteoblast lineage in vivo
体内软骨细胞和成骨细胞谱系的干细胞/祖细胞
- 批准号:
8848446 - 财政年份:2014
- 资助金额:
$ 49.19万 - 项目类别:
Stem/progenitor cells of the chondrocyte and osteoblast lineage in vivo
体内软骨细胞和成骨细胞谱系的干细胞/祖细胞
- 批准号:
8895296 - 财政年份:2014
- 资助金额:
$ 49.19万 - 项目类别:
Stem/progenitor cells of the chondrocyte and osteoblast lineage in vivo
体内软骨细胞和成骨细胞谱系的干细胞/祖细胞
- 批准号:
8279758 - 财政年份:2012
- 资助金额:
$ 49.19万 - 项目类别:
Stem/progenitor cells of the chondrocyte and osteoblast lineage in vivo
体内软骨细胞和成骨细胞谱系的干细胞/祖细胞
- 批准号:
8418734 - 财政年份:2012
- 资助金额:
$ 49.19万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
In vivo precision genome editing to correct genetic disease
体内精准基因组编辑以纠正遗传疾病
- 批准号:
10771419 - 财政年份:2023
- 资助金额:
$ 49.19万 - 项目类别:
Impact of SARS-CoV-2 infection on respiratory viral immune responses in children with and without asthma
SARS-CoV-2 感染对患有和不患有哮喘的儿童呼吸道病毒免疫反应的影响
- 批准号:
10568344 - 财政年份:2023
- 资助金额:
$ 49.19万 - 项目类别:
Reprogramming adult murine Müller glia via L-Myc expression
通过 L-Myc 表达对成年小鼠 Müller 胶质细胞进行重编程
- 批准号:
10751295 - 财政年份:2023
- 资助金额:
$ 49.19万 - 项目类别:
Assessing Sox 10's effect on chromatin accessibility in enteric neuron lineage diversification
评估 Sox 10 对肠神经元谱系多样化中染色质可及性的影响
- 批准号:
10749740 - 财政年份:2023
- 资助金额:
$ 49.19万 - 项目类别: