ACTIVITY-DRIVEN PLASTICITY OF THE HAIR CELL CYTOSKELETON
活动驱动的毛细胞细胞骨架的可塑性
基本信息
- 批准号:10748106
- 负责人:
- 金额:$ 44.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-07 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAdultAffectArchitectureAuditoryCellsCochleaCrosslinkerCytoskeletonDataDevelopmentExhibitsF-ActinFilamentFluorescence Recovery After PhotobleachingFreeze SubstitutionFreezingHairHair CellsHearingHeightImpairmentIn SituIonsKnowledgeLabelLabyrinthLeadLengthLinkMaintenanceMeasuresMediatingMicrofilamentsMolecularMorphologyMusMyosin ATPaseNatural regenerationNoise-Induced Hearing LossOrganellesOrganismPatternPhysiologicalPolymersProcessProtein IsoformsProteinsRattusReportingRestSamplingScanning Electron MicroscopySensoryShapesStereociliumStructureSupporting CellTestingTransmission Electron Microscopybeta Actincellular microvilluscongenital deafnesscrosslinkdepolymerizationexperimental studygamma Actinhearing impairmentmutant mouse modelnew therapeutic targetnoise exposurepolymerizationpostnatalsoundtomographyvibration
项目摘要
PROJECT SUMMARY/ABSTRACT
The mechanosensitivity of the inner ear hair cells depends on cellular projections known as
stereocilia, organized in rows of increasing height, with mechano-electrical transduction (MET) channels
located at the tips of shorter row stereocilia. The core of stereocilia consists of a highly crosslinked
paracrystalline array of actin filaments. While crosslinker proteins are constantly renewed, the renewal of
actin is limited to the stereocilia tips. We previously reported that the stereocilia actin core exhibits activity-dependent plasticity (Velez-Ortega, et al., eLife 2017). We showed that the blockage of MET channels
or the breakage of the tip links that gate these channels lead to the selective shortening of transducing
stereocilia (i.e. the stereocilia that harbor MET channels), while the non-transducing tallest row stereocilia
remain unaffected. Once the MET blockage is removed or the tip links regenerate, the stereocilia regrow.
Our preliminary data also show that this MET-dependent stereocilia remodeling can affect the resting
tension within the MET machinery in seconds. Thus, this process may dynamically regulate the sensitivity
of hair cells to sound-induced vibrations and, hence, the sensitivity of our hearing. Yet, the exact
mechanisms of MET-dependent stereocilia remodeling are still obscure. It is unknown even whether the
activity-dependent plasticity of the stereocilia cytoskeleton is limited to the regions of active actin renewal
or can expand beyond this region into the “stable” part of the stereocilia shaft. Here, we hypothesize that
the MET activity regulates the extent of the stereocilia cytoskeleton undergoing active actin remodeling.
To test this, Aim 1 will evaluate MET-dependent changes in actin dynamics within the stereocilia and the
cuticular plate, an actin-rich structure supporting the stereocilia bundle. Aim 2 will evaluate MET-driven
changes in the ultrastructural organization of stereocilia actin with transmission electron microscopy
tomography. Since the MET-dependent stereocilia remodeling was studied so far only in young postnatal
hair cells, Aim 3 will assess whether this phenomenon is present also in the mature adult auditory hair
cells. In Aim 4, we begin to explore the molecular players involved in the MET-driven stereocilia
remodeling, by evaluating the expression of so-called “stereocilia row identity proteins” in a mutant mouse
model that exhibits MET-dependent actin remodeling not only in transducing stereocilia but also,
unexpectedly, in non-transducing stereocilia. The study is significant, because it may clarify how exactly
a hair cell performs fine adjustments of the architecture of the stereocilia bundle, thereby maintaining the
sensitivity of our hearing throughout a lifetime. In addition, stereocilia shortening—and perhaps their
eventual disappearance—could occur after noise exposure (when the MET current is reduced due to tip
link breakage) or in certain cases of congenital deafness (due to impaired MET current). Therefore, this
study will expand our knowledge of the molecular mechanisms of various types of hearing loss.
项目概要/摘要
内耳毛细胞的机械敏感性取决于细胞投射,称为
静纤毛,排列成高度不断增加的行,具有机电传导 (MET) 通道
位于较短行静纤毛的尖端。静纤毛的核心由高度交联的结构组成。
当交联蛋白不断更新时,肌动蛋白丝的晶状阵列也会不断更新。
肌动蛋白仅限于静纤毛尖端。我们之前报道过静纤毛肌动蛋白核心表现出活动依赖性可塑性(Velez-Ortega 等人,eLife 2017)。
或者控制这些通道的尖端链接的断裂导致换能的选择性缩短
静纤毛(即含有 MET 通道的静纤毛),而非转导最高行静纤毛
一旦 MET 堵塞被移除或尖端链接再生,静纤毛就会重新生长。
我们的初步数据还表明,这种依赖于 MET 的静纤毛重塑会影响静息状态。
MET 机器内的张力在几秒钟内因此,该过程可以动态调节灵敏度。
毛细胞对声音引起的振动的影响,从而影响我们听觉的敏感性。
MET 依赖性静纤毛重塑的机制仍然不清楚。
静纤毛细胞骨架的活动依赖性可塑性仅限于活跃肌动蛋白更新的区域
或者可以扩展到这个区域之外,进入静纤毛轴的“稳定”部分。
MET 活性调节静纤毛细胞骨架进行主动肌动蛋白重塑的程度。
为了测试这一点,目标 1 将评估静纤毛和肌动蛋白内肌动蛋白动力学的 MET 依赖性变化。
角质板是一种支持静纤毛束的富含肌动蛋白的结构,Aim 2 将评估 MET 驱动的情况。
透射电子显微镜观察静纤毛肌动蛋白超微结构的变化
由于迄今为止仅在年轻的产后研究了 MET 依赖性静纤毛重塑。
毛细胞,Aim 3 将评估这种现象是否也存在于成熟的成年听毛中
在目标 4 中,我们开始探索 MET 驱动的静纤毛中涉及的分子参与者。
通过评估突变小鼠中所谓的“立体纤毛行识别蛋白”的表达来进行重塑
该模型不仅在转导静纤毛方面表现出 MET 依赖性肌动蛋白重塑,而且,
出乎意料的是,在非转导静纤毛中,这项研究意义重大,因为它可能阐明究竟是如何发生的。
毛细胞对静纤毛束的结构进行精细调整,从而维持
此外,我们一生中听力的敏感性也会缩短——也许还有它们的缩短。
最终消失——可能在噪声暴露后发生(当 MET 电流因尖端而减少时)
链接断裂)或在某些先天性耳聋的情况下(由于 MET 电流受损)。
研究将扩大我们对各种类型听力损失的分子机制的了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alejandra Catalina Velez Ortega其他文献
Alejandra Catalina Velez Ortega的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alejandra Catalina Velez Ortega', 18)}}的其他基金
Supplement for Mechanotransduction-Dependent Remodeling of the Stereocilia Cytoskeleton
立体纤毛细胞骨架的机械传导依赖性重塑的补充
- 批准号:
10170923 - 财政年份:2018
- 资助金额:
$ 44.2万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别:
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别:
Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
- 批准号:
10738365 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别:
Rhinovirus, airway smooth muscle, and mechanisms of irreversible airflow obstruction
鼻病毒、气道平滑肌和不可逆气流阻塞机制
- 批准号:
10735460 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别: