ACTIVITY-DRIVEN PLASTICITY OF THE HAIR CELL CYTOSKELETON
活动驱动的毛细胞细胞骨架的可塑性
基本信息
- 批准号:10748106
- 负责人:
- 金额:$ 44.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-07 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAdultAffectArchitectureAuditoryCellsCochleaCrosslinkerCytoskeletonDataDevelopmentExhibitsF-ActinFilamentFluorescence Recovery After PhotobleachingFreeze SubstitutionFreezingHairHair CellsHearingHeightImpairmentIn SituIonsKnowledgeLabelLabyrinthLeadLengthLinkMaintenanceMeasuresMediatingMicrofilamentsMolecularMorphologyMusMyosin ATPaseNatural regenerationNoise-Induced Hearing LossOrganellesOrganismPatternPhysiologicalPolymersProcessProtein IsoformsProteinsRattusReportingRestSamplingScanning Electron MicroscopySensoryShapesStereociliumStructureSupporting CellTestingTransmission Electron Microscopybeta Actincellular microvilluscongenital deafnesscrosslinkdepolymerizationexperimental studygamma Actinhearing impairmentmutant mouse modelnew therapeutic targetnoise exposurepolymerizationpostnatalsoundtomographyvibration
项目摘要
PROJECT SUMMARY/ABSTRACT
The mechanosensitivity of the inner ear hair cells depends on cellular projections known as
stereocilia, organized in rows of increasing height, with mechano-electrical transduction (MET) channels
located at the tips of shorter row stereocilia. The core of stereocilia consists of a highly crosslinked
paracrystalline array of actin filaments. While crosslinker proteins are constantly renewed, the renewal of
actin is limited to the stereocilia tips. We previously reported that the stereocilia actin core exhibits activity-dependent plasticity (Velez-Ortega, et al., eLife 2017). We showed that the blockage of MET channels
or the breakage of the tip links that gate these channels lead to the selective shortening of transducing
stereocilia (i.e. the stereocilia that harbor MET channels), while the non-transducing tallest row stereocilia
remain unaffected. Once the MET blockage is removed or the tip links regenerate, the stereocilia regrow.
Our preliminary data also show that this MET-dependent stereocilia remodeling can affect the resting
tension within the MET machinery in seconds. Thus, this process may dynamically regulate the sensitivity
of hair cells to sound-induced vibrations and, hence, the sensitivity of our hearing. Yet, the exact
mechanisms of MET-dependent stereocilia remodeling are still obscure. It is unknown even whether the
activity-dependent plasticity of the stereocilia cytoskeleton is limited to the regions of active actin renewal
or can expand beyond this region into the “stable” part of the stereocilia shaft. Here, we hypothesize that
the MET activity regulates the extent of the stereocilia cytoskeleton undergoing active actin remodeling.
To test this, Aim 1 will evaluate MET-dependent changes in actin dynamics within the stereocilia and the
cuticular plate, an actin-rich structure supporting the stereocilia bundle. Aim 2 will evaluate MET-driven
changes in the ultrastructural organization of stereocilia actin with transmission electron microscopy
tomography. Since the MET-dependent stereocilia remodeling was studied so far only in young postnatal
hair cells, Aim 3 will assess whether this phenomenon is present also in the mature adult auditory hair
cells. In Aim 4, we begin to explore the molecular players involved in the MET-driven stereocilia
remodeling, by evaluating the expression of so-called “stereocilia row identity proteins” in a mutant mouse
model that exhibits MET-dependent actin remodeling not only in transducing stereocilia but also,
unexpectedly, in non-transducing stereocilia. The study is significant, because it may clarify how exactly
a hair cell performs fine adjustments of the architecture of the stereocilia bundle, thereby maintaining the
sensitivity of our hearing throughout a lifetime. In addition, stereocilia shortening—and perhaps their
eventual disappearance—could occur after noise exposure (when the MET current is reduced due to tip
link breakage) or in certain cases of congenital deafness (due to impaired MET current). Therefore, this
study will expand our knowledge of the molecular mechanisms of various types of hearing loss.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alejandra Catalina Velez Ortega其他文献
Alejandra Catalina Velez Ortega的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alejandra Catalina Velez Ortega', 18)}}的其他基金
Supplement for Mechanotransduction-Dependent Remodeling of the Stereocilia Cytoskeleton
立体纤毛细胞骨架的机械传导依赖性重塑的补充
- 批准号:
10170923 - 财政年份:2018
- 资助金额:
$ 44.2万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别:
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别:
Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
- 批准号:
10738365 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别:
Rhinovirus, airway smooth muscle, and mechanisms of irreversible airflow obstruction
鼻病毒、气道平滑肌和不可逆气流阻塞机制
- 批准号:
10735460 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别: