Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
基本信息
- 批准号:10738365
- 负责人:
- 金额:$ 27.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActinsAdultAffectAnimalsBehaviorBiomechanicsBiomedical EngineeringCell ShapeCell-Cell AdhesionCellsChick EmbryoCultured CellsDataDevelopmentDiseaseEmbryoEmbryonic StructuresEmulsionsGelGenerationsGlassImpairmentIn SituLiquid substanceMagnetismMalignant NeoplasmsMapsMeasuresMechanical StressMechanicsMesodermMoldsMolecularMorphogenesisMorphologyMovementMyosin ATPaseMyosin Type IIN-CadherinNatureOilsOrganParaxial MesodermPhysicsProcessPropertyResearchRoleShapesSolidStressStructureSystemTechniquesTestingTissue EngineeringTissuesVariantZebrafishbiomechanical modelcell motilityclaydiagnostic toolembryo tissueepithelial to mesenchymal transitionexperimental studyin vivoinsightmalformationmechanical forcemonolayernon-muscle myosinnovelprenatalregional differenceresponsescoliosissimulationsomitogenesisspatiotemporaltumor progression
项目摘要
PROJECT SUMMARY
Sculpting tissues and organs into their 3D functional morphologies requires a tight spatiotemporal control of
tissue mechanics. While cell-generated mechanical forces power morphogenesis, the resulting tissue flows
that shape embryonic tissues in 3D depend strongly on the local tissue material properties, which govern the
system's response to the internally generated forces. As a consequence, spatiotemporal variations in both
mechanical forces and material properties can, independently or in combination, guide morphogenesis. The
complexity of probing tissue mechanics within developing embryos has so far hindered our ability to dissect
their specific roles and, more generally, to understand the biomechanical mechanisms that govern 3D tissue
and organ morphogenesis.
Using novel microdroplet-based techniques that the PI recently developed to measure both the tissue material
properties and endogenous mechanical stresses within developing embryos, we propose to reveal the
biomechanical mechanisms that underlie the formation of the zebrafish body axis. During posterior body axis
elongation, cells display an anteroposterior gradient in their motility. Our preliminary data suggest that the
anteroposterior variations in cellular movements may be caused by a transition between a fluid-like state of the
tissue at the posterior end to a solid-like state in the presomitic mesoderm. Our hypothesis is that regional
differences in fluid-like and solid-like tissue states control 3D tissue morphogenesis by enabling or restricting
morphogenetic flows. Specifically, we hypothesize that during zebrafish body elongation the paraxial
mesoderm transits from a fluid-like behavior in the tailbud to a solid-like behavior in the presomitic mesoderm,
allowing tissue flows at the elongating body end while providing mechanical integrity to developmentally older
structures, thereby guiding the nearly unidirectional tissue elongation of the body axis. In order to test this
hypothesis, we plan to (1) measure and compare anteroposterior variations in tissue yield stress and
endogenous mechanical stresses to establish the existence of fluid-like or solid-like tissue regions during body
axis elongation, (2) establish how key functional molecules (actin, non-muscle myosin II and N-cadherin)
control gradients in tissue mechanics and solid-like and fluid-like tissue states, and (3) integrate molecular, cell
and tissue mechanics into a multiscale biomechanical model of body elongation.
We believe this research will reveal a novel biomechanical mechanism of 3D tissue and organ morphogenesis,
in which the spatial control of fluid-like and solid-like tissue regions guides the shaping of embryonic tissues.
Moreover, it will dissect the specific roles of mechanical stresses and material properties in 3D tissue
morphogenesis and establish how key functional molecules control tissue mechanics in vivo.
项目摘要
将组织和器官雕刻到其3D功能形态中需要严格的时空控制
组织力学。而细胞生成的机械力功率形态发生,而所产生的组织流动
3D中的形状胚胎组织在很大程度上取决于局部组织材料的特性,该特性
系统对内部产生的力量的反应。结果,两者的时空变化
机械力和材料特性可以独立或组合起导形态发生。这
迄今为止,探测组织力学的复杂性已经阻碍了我们剖析的能力
它们的特定作用,更普遍地了解控制3D组织的生物力学机制
和器官形态发生。
使用新型的基于微孔的技术,PI最近开发了两种组织材料
性质和内源性机械应力在发育中的胚胎中,我们建议揭示
斑马鱼体轴形成的生物力学机制。在后轴上
伸长,细胞在运动性上显示前后梯度。我们的初步数据表明
细胞运动的前后变化可能是由于流体状态之间的过渡引起的
在前中胚层中固体状态的后端的组织。我们的假设是区域性
流体样和固体样组织状态的差异通过启用或限制来控制3D组织形态发生
形态发生流。具体而言,我们假设在斑马鱼体伸长期间
中胚层从尾梁中的流体样行为转变为前中胚层中的固体行为,
允许组织在细长的身体末端流动,同时提供机械完整性为发展
结构,从而引导人体轴几乎单向组织的伸长。为了测试这个
假设,我们计划(1)测量和比较组织应力和
内源性机械应力以建立人体中流体样或固体样组织区域的存在
轴伸长,(2)建立关键功能分子如何(肌动蛋白,非肌肉肌球蛋白II和N-钙粘着蛋白)
组织力学以及固体状和流体样组织状态的控制梯度,(3)整合分子,细胞
和组织力学成为人体伸长的多尺度生物力学模型。
我们认为这项研究将揭示3D组织和器官形态发生的新型生物力学机制,
在其中,对流体样和固体样组织区域的空间控制指导胚胎组织的形状。
此外,它将剖析3D组织中机械应力和材料特性的特定作用
形态发生并确定关键功能分子如何在体内控制组织力学。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Embryonic Tissues as Active Foams.
- DOI:10.1038/s41567-021-01215-1
- 发表时间:2021-07
- 期刊:
- 影响因子:19.6
- 作者:Kim S;Pochitaloff M;Stooke-Vaughan GA;Campàs O
- 通讯作者:Campàs O
Mechanical control of tissue shape and morphogenetic flows during vertebrate body axis elongation.
- DOI:10.1038/s41598-021-87672-3
- 发表时间:2021-04-21
- 期刊:
- 影响因子:4.6
- 作者:Banavar SP;Carn EK;Rowghanian P;Stooke-Vaughan G;Kim S;Campàs O
- 通讯作者:Campàs O
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Otger Campas其他文献
Otger Campas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Otger Campas', 18)}}的其他基金
Robust microdroplet-based mechanical probes for wide-ranging mechanobiology applications
坚固的基于微滴的机械探针,适用于广泛的机械生物学应用
- 批准号:
10242779 - 财政年份:2019
- 资助金额:
$ 27.37万 - 项目类别:
Robust microdroplet-based mechanical probes for wide-ranging mechanobiology applications
坚固的基于微滴的机械探针,适用于广泛的机械生物学应用
- 批准号:
10021683 - 财政年份:2019
- 资助金额:
$ 27.37万 - 项目类别:
Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
- 批准号:
10152375 - 财政年份:2018
- 资助金额:
$ 27.37万 - 项目类别:
Regulation of organogenesis through regional variations in tissue mechanics
通过组织力学的区域差异调节器官发生
- 批准号:
10330989 - 财政年份:2018
- 资助金额:
$ 27.37万 - 项目类别:
Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
- 批准号:
9923046 - 财政年份:2018
- 资助金额:
$ 27.37万 - 项目类别:
Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
- 批准号:
9750729 - 财政年份:2018
- 资助金额:
$ 27.37万 - 项目类别:
Bridging the Gap Between Molecular and Mechanical Control of Cell Morphogenesis
弥合细胞形态发生的分子和机械控制之间的差距
- 批准号:
9316651 - 财政年份:2014
- 资助金额:
$ 27.37万 - 项目类别:
Bridging the Gap Between Molecular and Mechanical Control of Cell Morphogenesis
弥合细胞形态发生的分子和机械控制之间的差距
- 批准号:
8825693 - 财政年份:2014
- 资助金额:
$ 27.37万 - 项目类别:
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 27.37万 - 项目类别:
Spatiotemporal control of tendon healing through modular, injectable hydrogel composites
通过模块化、可注射水凝胶复合材料对肌腱愈合的时空控制
- 批准号:
10605456 - 财政年份:2023
- 资助金额:
$ 27.37万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 27.37万 - 项目类别:
Unanticipated roles of C5aR1 Signaling Leading from Acute to Chronic Kidney Disease
C5aR1 信号转导从急性肾病到慢性肾病的意外作用
- 批准号:
10591053 - 财政年份:2023
- 资助金额:
$ 27.37万 - 项目类别:
Mechanisms of cardiomyocyte dysfunction due to the E258K-MYBPC3 mutation modeled in patient-derived cardiomyocytes
在患者来源的心肌细胞中建模 E258K-MYBPC3 突变引起的心肌细胞功能障碍的机制
- 批准号:
10462968 - 财政年份:2022
- 资助金额:
$ 27.37万 - 项目类别: