Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
基本信息
- 批准号:10677169
- 负责人:
- 金额:$ 79.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActinsAcute Lung InjuryAddressAdultAgreementAlveolarAlveolusArchitectureBiomechanicsBlood capillariesBreathingCell Fate ControlCell LineageCell NucleusCellsChemicalsChromatinCollaborationsComplexCytoplasmCytoskeletonDataDiseaseEndothelial CellsEndotheliumEpigenetic ProcessEpithelial CellsExtracellular MatrixGasesGenesGeneticGenetic TranscriptionGenomeHealthHomeostasisIn VitroInjuryLaboratoriesLigationLongevityLungManuscriptsMechanicsMesenchymalModelingMovementMusNatural regenerationNuclearNuclear EnvelopePathway interactionsPeriodicityPlayPositioning AttributePrincipal InvestigatorPublishingPulmonary SurfactantsPulmonary alveolar structureRecording of previous eventsResearch PersonnelRespirationRespiratory SystemRoleStretchingTechnologyalveolar epitheliumbiophysical techniquescell typeexperienceflexibilitygenetic approachgenome-widein vivolung developmentlung regenerationmechanical signalmechanotransductionnovelpreventprogenitorresponseresponse to injurysingle-cell RNA sequencing
项目摘要
PROJECT SUMMARY
The mammalian respiratory system undergoes cyclical mechanical strain as part of its normal function. Lungs
have evolved to be flexible to adapt to this strain, which involves rhythmic inflation and deflation of the alveoli for
efficient gas exchange. Multiple cell lineages comprise the alveolar niche including alveolar type 1 (AT1) and
alveolar type 2 (AT2) epithelial cells as well as various unique mesenchymal and endothelial cell types. AT1 cells
are required for efficient gas exchange across the endothelial capillary plexus while AT2 cells generate
pulmonary surfactant and act as facultative progenitors that differentiate into AT1 cells. While most studies on
mechanotransduction have focused on the response of mesenchymal lineages, the ability of epithelial cells, in
particular those within the lung alveoli, to respond to and maintain their identity and function in the face of this
continuous and rhythmic biomechanical strain has not been well defined. Using multiple genetic and biophysical
approaches, we present new preliminary data demonstrating that loss of cytoskeletal-extracellular matrix
interactions via genetic, mechanical and chemical perturbations in AT1cells, leads to their rapid reprogramming
into AT2 cells in vivo. Single cell RNA-seq (scRNA-seq) analysis shows that these reprogrammed AT2 cells are
very similar to normal AT2 cells. Loss of AT1 cell fate is accompanied by coordinate changes in lamina-
associated chromatin domain (LAD) organization, causing sequestration or release of AT1 or AT2 specific loci
located in LAD sat the nuclear periphery. This phenomenon inversely correlates to the changes in alveolar
epithelial cell fate. Importantly, we have developed a novel model of unilateral mechanical unloading of the
cyclical strain from breathing movements in the lungs and show that this causes a profound reprogramming of
AT1 into AT2 cells. In agreement with these new Preliminary Data, our laboratories recently demonstrated that
Yap/Taz are found in the nucleus of AT1, but not AT2cells, and are essential for maintaining AT1 cell fate
throughout the lifespan of mice. Loss of Yap/Taz results in a rapid reprogramming of AT1 cells into AT2 cells in
the absence of injury. Since Yap/Taz can function as cytoplasmic mechanotransducers in cells and translocate
to the nucleus upon actin-regulated cell stretch and strain, our combined preliminary and published data suggest
that mechanotransduction plays a specific role in AT1cells to maintain alveolar function in the homeostatic lung.
Thus, our published and preliminary data raise a provocative hypothesis that the lung has evolved specific
epigenetic and transcriptional mechanisms to maintain cellular fate in the face of mechanical strain from normal
respiration and these pathways are altered in the response to injury and disease. This proposal brings together
two complementary laboratories with extensive experience in the study of lung development, epigenetic control
of cell fate, and the inherent implications for regeneration and disease and we aim to address key unanswered
questions in cell fate regulation in lung development and regeneration.
项目摘要
哺乳动物呼吸系统是其正常功能的一部分,经历周期性的机械应变。肺
已经演变为灵活以适应这种菌株,这涉及节奏通胀和肺泡的放气。
有效的气体交换。多个细胞谱系包括肺泡小裂,包括1型牙槽(AT1)和
牙槽2(AT2)上皮细胞以及各种独特的间质细胞和内皮细胞类型。 AT1细胞
在跨内皮毛细血管上有效的气体交换需要,而AT2细胞产生
肺表面活性剂并充当分化为AT1细胞的兼职祖细胞。而大多数研究
机械转导的重点是间充质谱系的响应,上皮细胞的能力,在
尤其是肺肺泡内的人,面对这
连续和节奏的生物力学应变尚未得到很好的定义。使用多个遗传和生物物理
方法,我们提供了新的初步数据,表明细胞骨架 - 骨骼矩阵的丧失
通过AT1细胞中遗传,机械和化学扰动的相互作用,导致其快速重新编程
在体内进入AT2细胞。单细胞RNA-SEQ(SCRNA-SEQ)分析表明,这些重编程的AT2细胞是
与正常AT2细胞非常相似。 AT1细胞命运的损失伴随着椎板的坐标变化
相关的染色质结构域(LAD)组织,导致AT1或AT2特定基因座的隔离或释放
位于LAD坐在核外围。这种现象与牙槽的变化成反比
上皮细胞命运。重要的是,我们开发了一种新型的单方面机械卸载模型
来自肺部呼吸运动的周期性应变,表明这导致了深刻的重新编程
AT1进入AT2细胞。与这些新的初步数据一致,我们的实验室最近证明
在AT1的核中发现YAP/TAZ,但没有AT2细胞,对于维持AT1细胞命运至关重要
在整个小鼠的寿命中。 YAP/TAZ的丢失导致AT1细胞快速重编程为AT2细胞中的AT2细胞
没有伤害。由于yap/taz可以用作细胞中的细胞质机械转换器并运输
在肌动蛋白调节的细胞拉伸和应变时,我们的组合初步和已发表的数据表明
该机械转导的作用在AT1细胞中起着特定的作用,以维持稳态肺中的肺泡功能。
因此,我们已发表的初步数据提出了一个挑衅的假设,即肺已经发展为特定
表观遗传和转录机制,以正常的机械应变状态维持细胞命运
呼吸和这些途径在对损伤和疾病的反应中发生了改变。该提议汇集了
两个互补的实验室,在肺发育研究,表观遗传控制方面具有丰富经验
细胞命运以及对再生和疾病的固有含义,我们旨在解决未解决的关键
细胞命运调节肺发育和再生中的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EDWARD E MORRISEY其他文献
EDWARD E MORRISEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EDWARD E MORRISEY', 18)}}的其他基金
Control of lung alveolar regeneration by Dot1L/H3K79 methylation
通过 Dot1L/H3K79 甲基化控制肺泡再生
- 批准号:
10594734 - 财政年份:2023
- 资助金额:
$ 79.08万 - 项目类别:
Transcriptional Regulation of Lung Alveolar Regeneration
肺泡再生的转录调控
- 批准号:
10331870 - 财政年份:2021
- 资助金额:
$ 79.08万 - 项目类别:
Transcriptional Regulation of Lung Alveolar Regeneration
肺泡再生的转录调控
- 批准号:
10549771 - 财政年份:2021
- 资助金额:
$ 79.08万 - 项目类别:
Multi-modal characterization of three human lung niches at the single cell level
单细胞水平上三个人肺生态位的多模式表征
- 批准号:
10447113 - 财政年份:2019
- 资助金额:
$ 79.08万 - 项目类别:
Multi-modal characterization of three human lung niches at the single cell level
单细胞水平上三个人肺生态位的多模式表征
- 批准号:
9815560 - 财政年份:2019
- 资助金额:
$ 79.08万 - 项目类别:
Multi-modal characterization of three human lung niches at the single cell level
单细胞水平上三个人肺生态位的多模式表征
- 批准号:
10675745 - 财政年份:2019
- 资助金额:
$ 79.08万 - 项目类别:
Multi-modal characterization of three human lung niches at the single cell level
单细胞水平上三个人肺生态位的多模式表征
- 批准号:
10213132 - 财政年份:2019
- 资助金额:
$ 79.08万 - 项目类别:
相似海外基金
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 79.08万 - 项目类别:
Alveolar epithelial stress-induced polyploidization in lung injury and repair
肺损伤和修复中肺泡上皮应激诱导的多倍化
- 批准号:
10621898 - 财政年份:2022
- 资助金额:
$ 79.08万 - 项目类别:
Mechanisms of Airway Epithelial Barrier Dysfunction by Respiratory Syncytial Virus and Environmental Stimuli
呼吸道合胞病毒和环境刺激导致气道上皮屏障功能障碍的机制
- 批准号:
10657436 - 财政年份:2019
- 资助金额:
$ 79.08万 - 项目类别:
Mechanisms of Airway Epithelial Barrier Dysfunction by Respiratory Syncytial Virus and Environmental Stimuli
呼吸道合胞病毒和环境刺激导致气道上皮屏障功能障碍的机制
- 批准号:
10443817 - 财政年份:2019
- 资助金额:
$ 79.08万 - 项目类别: