Spatiotemporal control of tendon healing through modular, injectable hydrogel composites

通过模块化、可注射水凝胶复合材料对肌腱愈合的时空控制

基本信息

  • 批准号:
    10605456
  • 负责人:
  • 金额:
    $ 3.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Biomaterials-based approaches have potential for treating tendon injury, the chronic sequelae of which include pain, diminished function, and heightened risk of reinjury due to aberrant scar formation. Unfortunately, the undefined origin and function of numerous cellular players involved in the tendon injury response have made it difficult to identify biological mechanisms of these poor outcomes. As a result, therapeutic targets for biomaterials-mediated tendon repair approaches have not been established. Recently, it has been shown that neonatal mice fully regenerate completely transected tendons. Key differences in their injury response compared to that of adults suggest that recruitment of progenitor cells and their subsequent tenogenic differentiation can lead to regenerative healing. Thus, the long-term goal of the proposed work is to develop a biomaterial therapy capable of coordinating multiple, distinct phases of tendon healing. Toward this end, we aim to design a synthetic, hydrogel-based composite scaffold that integrates physical (mechanical and topographical) and soluble cues to 1) recruit specific progenitor cell populations to the injury site and 2) direct tenogenic progenitor cell differentiation and de novo matrix synthesis of the appropriate composition and organization following tendon injury. Our central hypothesis is that spatiotemporal presentation of combinatorial microenvironmental cues can control the abundance and identity of reparative cells entering the injury site and promote their differentiation and matrix remodeling activity, both of which will improve the adult tendon healing response. Our preliminary data establishes a material that is permissive to tendon progenitor cell (TPC) migration and tenogenic differentiation; moreover, we have established a tunable soluble factor release system enabling gradual release of chemotactic cues and cell-triggered release of differentiation factors. We have already found that physical and microgel- delivered soluble cues synergistically enhance TPC recruitment into these composite hydrogels. Therefore, in Aim 1, we will optimize microenvironmental cues for driving robust tenogenic differentiation in vitro. In Aim 2, this dextran vinyl sulfone-based material system will be tested in a murine Achilles tendon injury model to study the effects of these cues on recruitment of TPCs to the wound site, subsequent tenogenesis, and matrix deposition/organization. The extent of tenogenic differentiation will be quantified through the expression of a panel of tenogenic factors, deposition of organized de novo matrix supporting tenogenesis, and functional analysis of regenerated tendons. This work will establish a novel, injectable, modular hydrogel scaffold capable of driving a robust tendon healing response in adult mice. Moreover, this work will provide a deeper understanding of the microenvironmental cues regulating tenogenesis, information critical to the advancement of biomaterial therapeutics geared toward connective tissue regeneration.
项目摘要 基于生物材料的方法具有治疗肌腱损伤的潜力,其慢性后遗症包括 由于异常形成疤痕,疼痛,功能减弱以及重新枪击的风险增加。不幸的是, 参与肌腱损伤反应的众多细胞玩家的不确定的起源和功能使它成为现实 难以识别这些不良结果的生物学机制。结果,治疗目标 尚未确定生物材料介导的肌腱修复方法。最近,已经表明 新生小鼠完全再生完全转换的肌腱。与他们的受伤反应相比 成年人表明,祖细胞及其随后的终结分化可以 导致再生治疗。因此,拟议工作的长期目标是开发生物材料疗法 能够协调肌腱愈合的多个不同的阶段。为此,我们旨在设计一个合成, 基于水凝胶的复合支架,将物理(机械和地形)和可溶性提示整合到 1)招募特定的祖细胞群体到损伤部位和2)直接终止祖细胞分化 和肌腱损伤后适当组成和组织的从头矩阵合成。我们的中心 假设是组合微环境提示的时空表现可以控制 进入伤害部位并促进其分化和矩阵的修复细胞的丰度和身份 重塑活性,两者都将改善成年肌腱愈合反应。我们的初步数据 建立一种允许肌腱祖细胞(TPC)迁移和终止分化的材料; 此外,我们已经建立了一个可调的可溶性因子释放系统,从而逐渐释放了趋化性 线索和细胞触发的分化因子的释放。我们已经发现物理和微凝胶 - 传递的可溶性线索协同增强了TPC募集到这些复合水凝胶中。因此,在 AIM 1,我们将优化微环境线索,以在体外驱动稳健的终止分化。在AIM 2中,这个 葡聚糖乙烯基磺极的材料系统将在鼠腱损伤模型中进行测试,以研究 这些线索对TPC募集到伤口部位的影响,随后的肾脏和矩阵 沉积/组织。通过表达A的表达,将量化延期分化的程度 延期因子的小组,有组织的从头基质的沉积支持肾和功能 再生肌腱的分析。这项工作将建立一个可注射的,可注射的模块化水凝胶支架 在成年小鼠中驱动强大的肌腱愈合反应。此外,这项工作将提供更深的 了解调节肾脏的微环境提示,对进步至关重要的信息 用于结缔组织再生的生物材料疗法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Nathan Kent其他文献

Robert Nathan Kent的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
  • 批准号:
    42307523
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向肝癌射频消融的智能建模与快速动力学分析方法研究及其临床验证
  • 批准号:
    62372469
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
IRF9调控CD8+T细胞介导微波消融联合TIGIT单抗协同增效抗肿瘤的作用机制
  • 批准号:
    82373219
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
建立可诱导细胞消融系统揭示成纤维细胞在墨西哥钝口螈肢体发育及再生中的作用
  • 批准号:
    32300701
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肿瘤源PPIA介导结直肠癌肝转移射频消融术残瘤化疗抵抗的机制研究
  • 批准号:
    82302332
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Shear stress-mediated Notch1 activation by intrinsic cell adhesive and cytoskeletal activity
通过内在细胞粘附和细胞骨架活性剪切应力介导的 Notch1 激活
  • 批准号:
    10683710
  • 财政年份:
    2022
  • 资助金额:
    $ 3.29万
  • 项目类别:
Shear stress-mediated Notch1 activation by intrinsic cell adhesive and cytoskeletal activity
通过内在细胞粘附和细胞骨架活性剪切应力介导的 Notch1 激活
  • 批准号:
    10389629
  • 财政年份:
    2022
  • 资助金额:
    $ 3.29万
  • 项目类别:
Creeping fat and Crohn's disease associated strictures
蠕动脂肪和克罗恩病相关的狭窄
  • 批准号:
    10641679
  • 财政年份:
    2020
  • 资助金额:
    $ 3.29万
  • 项目类别:
Epidermal polarization: the desmosomal cadherin desmoglein 1 regulates tissue mechanics and barrier function
表皮极化:桥粒钙粘蛋白桥粒糖蛋白 1 调节组织力学和屏障功能
  • 批准号:
    9904494
  • 财政年份:
    2019
  • 资助金额:
    $ 3.29万
  • 项目类别:
An investigation of the roles of mechanical signaling in YAP-mediated tooth renew
机械信号在 YAP 介导的牙齿更新中作用的研究
  • 批准号:
    9904599
  • 财政年份:
    2019
  • 资助金额:
    $ 3.29万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了