Shear stress-mediated Notch1 activation by intrinsic cell adhesive and cytoskeletal activity
通过内在细胞粘附和细胞骨架活性剪切应力介导的 Notch1 激活
基本信息
- 批准号:10683710
- 负责人:
- 金额:$ 3.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2025-02-14
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAblationActinsAdherens JunctionAdhesivesArchitectureAtherosclerosisBarberingBindingBiomimeticsBiosensorBlocking AntibodiesBloodBlood CirculationBlood Plasma VolumeBlood VesselsBlood flowC-terminalCardiovascular DiseasesCell Adhesion MoleculesCell LineCell membraneCell-Cell AdhesionCellsChronicClathrinClinicalClustered Regularly Interspaced Short Palindromic RepeatsCommunicationComplexCouplingCytoskeletonDataDiseaseEdemaEducational process of instructingEndothelial CellsEndotheliumEquilibriumFamilyFrictionGenetic TranscriptionGoalsHomeostasisHumanHuman DevelopmentInflammatoryInterventionIschemiaKnowledgeLeadLigandsLinkLiquid substanceMeasuresMechanicsMediatingMentorsModelingMolecularMorphogenesisMyocardial InfarctionNatural regenerationNeurodegenerative DisordersNutrientPathogenesisPathologicPathway interactionsPermeabilityPhosphorylationPolymersProcessProteinsProteomicsReceptor ActivationRegulationResearchResistanceRoleSignal TransductionStrokeTestingTissue ModelTissuesTrainingTransducersVascular Cell Adhesion Molecule-1Vascular DiseasesVascular EndotheliumVascular PermeabilitiesWorkbeta catenincadherin 5careercareer developmentendothelial dysfunctionexperiencehemodynamicshuman modelimprovedinhibitorinsightlive cell microscopymechanical forcemutantnew therapeutic targetnotch proteinnovelpolymerizationpreventreceptorrepairedresponsesensorshear stressspatiotemporalsuperresolution microscopyultra high resolution
项目摘要
PROJECT SUMMARY/ABSTRACT
Precise and dynamic regulation of vascular barrier function, the ability of endothelial cells that line blood vessels
to provide a selectively permeable barrier between the bloodstream and surrounding tissue, is universally
important for maintaining tissue homeostasis. The pathological consequences of dysregulated barrier are evident
in various cardiovascular diseases like atherosclerosis and chronic ischemia as well as inflammatory and
neurodegenerative diseases. In homeostatic conditions, hemodynamic shear stress, the frictional drag force
exerted by the flow of blood on endothelial cells, promotes vascular homeostasis and barrier function through
remodeling and enhancement of cell-cell adherens junctions (AJs) and intrinsic actin cytoskeletal dynamics. The
critical cell-cell adhesion molecule vascular endothelial (VE-) cadherin, the principle component of AJs, regulates
junctional stability through its turnover and internalization and experiences significant changes in tension under
shear stress. Additionally, the actin cytoskeleton regulates vascular barrier by maintaining a balance between
dynamic pushing forces to maintain VE-cadherin and tensile forces which stabilize intracellular AJ complexes.
However, the specific molecular sensors and transducers that link hemodynamic shear stress to the mechanical
regulation of AJs and vascular barrier function remain poorly understood. Activation of the ubiquitously important
Notch1 receptor was recently been found to modulate vascular barrier function in response to shear stress by
complexing with VE-cadherin and stabilizing AJs. While previous work has determined how this Notch1 cortical
pathway modulates vascular barrier function, it remains unclear how shear stress activates the Notch1 receptor.
Building on preliminary data linking Notch1 to intrinsic cellular adhesive and cytoskeletal machinery, this proposal
tests the hypothesis that intrinsic coupling of Notch1 to VE-cadherin and the cortical actin cytoskeleton regulates
shear stress-mediated Notch1 activation. Interrogation of Notch1 activation in response to shear stress will be
approached by completing two specific aims: (1) determine how VE-cadherin spatiotemporally regulates
Notch1 and its ligand Dll4 to coordinate activation by shear stress and (2) identify the mechanical
interplay between Notch1 and intrinsic actin cytoskeletal dynamics under shear stress. Throughout the
course of the proposed research, I will gain training in 3D biomimetic models of the human microvasculature,
super-resolution live cell microscopy, and mechanistic molecular approaches, while simultaneously enhancing
career development through training in scientific communication, mentoring, and teaching. I have assembled an
exceptional, complementary mentoring team to help me achieve my research and career goals: Dr. Matthew
Kutys, an expert in organotypic tissue modeling and cell mechanics will be my primary sponsor and Dr. Diane
Barber, a leader in cellular cytoskeletal dynamics, will be my co-sponsor. Ultimately, these findings will identify
new mechanisms by which Notch1 is activated in response to shear stress and potentially identify new
therapeutic targets for modulating barrier function and other vasculopathies where Notch1 is implicated.
项目摘要/摘要
血管屏障功能的精确和动态调节,这是血管排列血管的内皮细胞的能力
为了在血液和周围组织之间提供有选择的渗透障碍,是普遍的
对于维持组织稳态至关重要。失调障碍的病理后果很明显
在各种心血管疾病中,诸如动脉粥样硬化和慢性缺血以及炎症性和
神经退行性疾病。在体内稳态条件下,血液动力学剪切应力,摩擦力阻力
血液流动在内皮细胞上施加,通过
细胞 - 细胞粘附连接(AJS)和固有的肌动蛋白细胞骨架动力学的重塑和增强。这
临界细胞 - 细胞粘附分子血管内皮(VE-)钙粘蛋白(AJS的原理)调节
连接稳定性通过其营业额和内在化,并在张力下经历重大变化
剪切应力。此外,肌动蛋白细胞骨架通过保持在
动态推动力以维持稳定细胞内AJ复合物的VE-钙粘蛋白和拉伸力。
但是,将血液动力学应力与机械联系起来的特定分子传感器和换能器
AJS和血管屏障功能的调节仍然很少理解。无处不在的激活
最近发现Notch1受体可以根据剪切应力调节血管屏障功能
与VE-钙粘蛋白复合并稳定AJ。虽然以前的工作已经确定了这种缺口
途径调节血管屏障功能,尚不清楚剪切应力如何激活Notch1受体。
基于将Notch1与固有细胞粘合剂和细胞骨架机械联系起来的初步数据,该建议
测试了Notch1与VE-钙粘蛋白和皮质肌动蛋白细胞骨架的内在耦合的假设
剪切应力介导的Notch1激活。响应剪切应力的Notch1激活的询问将是
通过完成两个具体目的来接近:(1)确定VE-钙粘蛋白如何进行时空调节
Notch1及其配体DLL4通过剪切应力协调激活,(2)确定机械
在剪切应力下Notch1和固有性肌动蛋白细胞骨架动力学之间的相互作用。整个
在拟议的研究过程中,我将获得人类微脉管系统的3D仿生模型的培训,
超分辨率的活细胞显微镜和机械分子方法,同时增强
通过科学沟通,指导和教学培训的职业发展。我已经组装了
非凡的补充指导团队,以帮助我实现自己的研究和职业目标:马修博士
库蒂(Kutys)是器官组织建模和细胞力学专家,将是我的主要赞助商和黛安(Diane)博士
理发师是细胞细胞骨架动力学的领导者,将是我的共同赞助商。最终,这些发现将确定
通过剪切应力激活Notch1并有可能识别新机制
调节屏障功能和牵涉NOTCH1的其他血管病的治疗靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tania Singh其他文献
Tania Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tania Singh', 18)}}的其他基金
Shear stress-mediated Notch1 activation by intrinsic cell adhesive and cytoskeletal activity
通过内在细胞粘附和细胞骨架活性剪切应力介导的 Notch1 激活
- 批准号:
10389629 - 财政年份:2022
- 资助金额:
$ 3.94万 - 项目类别:
相似国自然基金
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向肝癌射频消融的智能建模与快速动力学分析方法研究及其临床验证
- 批准号:62372469
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
IRF9调控CD8+T细胞介导微波消融联合TIGIT单抗协同增效抗肿瘤的作用机制
- 批准号:82373219
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
建立可诱导细胞消融系统揭示成纤维细胞在墨西哥钝口螈肢体发育及再生中的作用
- 批准号:32300701
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肿瘤源PPIA介导结直肠癌肝转移射频消融术残瘤化疗抵抗的机制研究
- 批准号:82302332
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Spatiotemporal control of tendon healing through modular, injectable hydrogel composites
通过模块化、可注射水凝胶复合材料对肌腱愈合的时空控制
- 批准号:
10605456 - 财政年份:2023
- 资助金额:
$ 3.94万 - 项目类别:
Shear stress-mediated Notch1 activation by intrinsic cell adhesive and cytoskeletal activity
通过内在细胞粘附和细胞骨架活性剪切应力介导的 Notch1 激活
- 批准号:
10389629 - 财政年份:2022
- 资助金额:
$ 3.94万 - 项目类别:
Creeping fat and Crohn's disease associated strictures
蠕动脂肪和克罗恩病相关的狭窄
- 批准号:
10641679 - 财政年份:2020
- 资助金额:
$ 3.94万 - 项目类别:
Epidermal polarization: the desmosomal cadherin desmoglein 1 regulates tissue mechanics and barrier function
表皮极化:桥粒钙粘蛋白桥粒糖蛋白 1 调节组织力学和屏障功能
- 批准号:
9904494 - 财政年份:2019
- 资助金额:
$ 3.94万 - 项目类别:
An investigation of the roles of mechanical signaling in YAP-mediated tooth renew
机械信号在 YAP 介导的牙齿更新中作用的研究
- 批准号:
9904599 - 财政年份:2019
- 资助金额:
$ 3.94万 - 项目类别: