Epidermal polarization: the desmosomal cadherin desmoglein 1 regulates tissue mechanics and barrier function
表皮极化:桥粒钙粘蛋白桥粒糖蛋白 1 调节组织力学和屏障功能
基本信息
- 批准号:9904494
- 负责人:
- 金额:$ 8.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-03 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAblationActinsActomyosinAdhesivesAffectApicalArchitectureAreaAtomic Force MicroscopyAtopic DermatitisAutoimmune ProcessBacterial ToxinsBasal CellBiochemicalBiological AssayBody FluidsCadherinsCell ProliferationCell ShapeCell physiologyCellsCellular MorphologyChemicalsCytoskeletonDataDefectDesmosomesDevelopmentDiseaseEMS1 geneERBB2 geneEpidermal Growth Factor ReceptorEpidermisEpithelialEpitheliumErbB Receptor Family ProteinEtiologyExhibitsFamilyFluorescenceFutureGrowthHealthHeartHereditary DiseaseHumanIntermediate FilamentsIonsLasersLinkMeasuresMechanical StressMechanicsMediatingMembraneMembrane ProteinsMolecularMovementNormal tissue morphologyOrganellesPatientsPatternPlayPopulationPrevalenceProcessPropertyProteinsPsoriasisReceptor Protein-Tyrosine KinasesRegulationRoleShapesSignal TransductionSignaling MoleculeSimple EpitheliumSkinSpectrum AnalysisStratificationStratified EpitheliumStratum BasaleStratum GranulosumStructureSurfaceSystemTestingTight JunctionsTimeTissuesWorkapical membranebasolateral membranedesmoglein 1human modelinsightintestinal epitheliumloss of functionmechanical propertiesmembermolecular markermouse modelpolymerizationpreventprotein complexprotein expressionreceptorself-renewalskin barrierskin disordersrc-Family Kinasesstem cellswound healing
项目摘要
Cells within all types of epithelia are polarized such that they have distinct domains at their lower and upper
regions. For example, in simple epithelia, which consist of a single layer of cells, there are specialized protein
complexes near their apical surface that are essential for holding cells together, limiting the passage of molecules
and ions through the space between cells, and stopping the movement of membrane proteins between the apical
and basolateral membranes. These structures coordinate with cytoskeletal networks to generate contractile
forces that are essential in regulating tissue growth, shape, movement, and barrier establishment. Multilayer
epithelial tissues, like the epidermis of the skin, are also polarized, but across many cell layers. How these
patterns emerge in the epidermis and how they regulate normal tissue functions are not fully understood. This
study will focus on the cadherin desmoglein 1 (Dsg1), which is a part of the desmosome, a cell-cell adhesive
organelle. Dsg1 is a disease target involved in autoimmune, bacterial toxin-mediated, and inherited diseases
and is only expressed in multilayer epithelia. The amount of Dsg1 present in each of the layers of the skin is
patterned, with very little protein in the lowest layer and increasing amounts toward the outer layers. This
suggests that the functional overlay of patterned Dsg1 onto the baseline machinery found in simple epithelia led
to new mechanisms to increase tissue complexity. Preliminary studies indicate that there is a region under high
tension in the outermost living layers of the epidermis. Moreover, loss of Dsg1 resulted in a shift in the localization
of this high-tension region. It is known that skin is under tension, and that tension contributes to the growth of
epidermal tissue as well as to the process of wound healing. In Aim 1 of this proposal, we will use laser ablation
and atomic force microscopy to test the role of Dsg1 in regulating epidermal tissue mechanics (tension and
stiffness). I hypothesize this occurs through Dsg1 integrating with modulators of the actin cytoskeleton, known
regulators of cell forces. Chemical signaling platforms are also patterned in the epidermis, including members of
the epidermal growth factor receptor (ErbB) family. The best-known member, epidermal growth factor receptor
(EGFR), plays an important role in regulating cell proliferation in the basal layer of the epidermis. However, the
functions of other members in the skin are not well known. Preliminary data show that ErbB2 is located in the
uppermost living layers of the epidermis, where tight junctions are formed. Tight junctions are an integral part of
the epidermal barrier, preventing loss of body fluids and entrance of foreign substances. Dsg1 regulates the total
amount and the activity of ErbB2, and together Dsg1 and ErbB2 regulate tight junction proteins. Aim 2 of this
proposal will ascertain the mechanism by which Dsg1 affects ErbB2, and the extent to which these proteins work
together to regulate the formation and function of the epidermal barrier. Future work will examine the effects of
Dsg1-mediated mechanics on ErbB2 activity and barrier function, linking Aims 1 and 2. I propose that Dsg1
integrates mechanical and chemical signals to control the polarized architecture and function of the epidermis.
所有类型的上皮细胞内的细胞都是极化的,因此它们的下层和上层具有不同的域
地区。例如,在由单层细胞组成的简单上皮细胞中,有专门的蛋白质
靠近顶端表面的复合物对于将细胞固定在一起、限制分子的通过至关重要
和离子通过细胞之间的空间,并阻止膜蛋白在顶端之间的运动
和基底外侧膜。这些结构与细胞骨架网络协调产生收缩性
对于调节组织生长、形状、运动和屏障建立至关重要的力。多层
上皮组织,如皮肤的表皮,也是极化的,但跨越许多细胞层。这些如何
表皮中出现的模式以及它们如何调节正常组织功能尚不完全清楚。这
研究将重点关注钙粘蛋白桥粒糖蛋白 1 (Dsg1),它是桥粒的一部分,桥粒是一种细胞与细胞的粘合剂
细胞器。 Dsg1 是涉及自身免疫性疾病、细菌毒素介导的疾病和遗传性疾病的疾病靶点
并且仅在多层上皮细胞中表达。皮肤各层中 Dsg1 的含量为
图案化,最底层蛋白质含量极少,越往外层蛋白质含量越多。这
表明图案化的 Dsg1 与简单上皮细胞中发现的基线机制的功能重叠导致
增加组织复杂性的新机制。初步研究表明,存在一个区域处于高
表皮最外层活层的张力。此外,Dsg1 的丢失导致定位的转变
这个高压地区。众所周知,皮肤处于紧张状态,而这种紧张会促进皮肤的生长。
表皮组织以及伤口愈合过程。在本提案的目标 1 中,我们将使用激光烧蚀
和原子力显微镜测试Dsg1在调节表皮组织力学(张力和张力)中的作用
刚性)。我假设这是通过 Dsg1 与肌动蛋白细胞骨架调节剂整合而发生的,已知
细胞力的调节者。化学信号平台也在表皮中形成图案,包括
表皮生长因子受体 (ErbB) 家族。最知名的成员,表皮生长因子受体
(EGFR),在调节表皮基底层细胞增殖中发挥重要作用。然而,
皮肤中其他成员的功能尚不清楚。初步数据显示,ErbB2 位于
表皮最上面的活层,在那里形成紧密的连接。紧密连接是不可分割的一部分
表皮屏障,防止体液流失和异物进入。 DSg1 调节总量
ErbB2 的量和活性,以及 Dsg1 和 ErbB2 一起调节紧密连接蛋白。这个目标2
该提案将确定 Dsg1 影响 ErbB2 的机制,以及这些蛋白质发挥作用的程度
共同调节表皮屏障的形成和功能。未来的工作将检查其影响
Dsg1 介导的 ErbB2 活性和屏障功能机制,连接目标 1 和 2。我建议 Dsg1
整合机械和化学信号来控制表皮的极化结构和功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Allen Broussard其他文献
Joshua Allen Broussard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
典型草原不同退化类型雪水消融过程水分转换效率研究
- 批准号:32360295
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于荷顺铂温敏纳米凝胶载KU135介入栓塞联合射频消融治疗肝癌的实验研究
- 批准号:82302331
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
消融热效应下肝癌超级增强子驱动的DNAJB1与cIAP2互作对中性粒细胞胞外诱捕网(NETs)形成的作用及机制探究
- 批准号:82302319
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Spatiotemporal control of tendon healing through modular, injectable hydrogel composites
通过模块化、可注射水凝胶复合材料对肌腱愈合的时空控制
- 批准号:
10605456 - 财政年份:2023
- 资助金额:
$ 8.79万 - 项目类别:
Shear stress-mediated Notch1 activation by intrinsic cell adhesive and cytoskeletal activity
通过内在细胞粘附和细胞骨架活性剪切应力介导的 Notch1 激活
- 批准号:
10389629 - 财政年份:2022
- 资助金额:
$ 8.79万 - 项目类别:
Shear stress-mediated Notch1 activation by intrinsic cell adhesive and cytoskeletal activity
通过内在细胞粘附和细胞骨架活性剪切应力介导的 Notch1 激活
- 批准号:
10683710 - 财政年份:2022
- 资助金额:
$ 8.79万 - 项目类别:
Creeping fat and Crohn's disease associated strictures
蠕动脂肪和克罗恩病相关的狭窄
- 批准号:
10641679 - 财政年份:2020
- 资助金额:
$ 8.79万 - 项目类别:
An investigation of the roles of mechanical signaling in YAP-mediated tooth renew
机械信号在 YAP 介导的牙齿更新中作用的研究
- 批准号:
9904599 - 财政年份:2019
- 资助金额:
$ 8.79万 - 项目类别: