Transcriptional regulation over neurogenesis of cortical output neuron segmental identity and diversity
皮质输出神经元节段同一性和多样性的神经发生的转录调控
基本信息
- 批准号:10638147
- 负责人:
- 金额:$ 46.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AT Rich SequenceATAC-seqAdultAffectAgeAmyotrophic Lateral SclerosisAxonBinding ProteinsBirthBrain StemCellsCerebral PalsyCorticospinal TractsDataDevelopmentDisease modelEmbryoEmbryonic DevelopmentFoundationsGene DeliveryGenesGenetic TranscriptionGoalsHealth Care CostsHumanIn VitroIndividualInjectionsInjuryInvestigationKnock-inKnock-in MouseKnockout MiceLabelLifeLinkMediatingMolecularMolecular TargetMotor Neuron DiseaseMotor NeuronsMotor outputMovementMusNatural regenerationNeocortexNervous SystemNeuronsOutputParalysedPathway interactionsPlayPopulationProcessPublic HealthQuality of lifeRecoveryRecovery of FunctionRegulationReporterResearchResolutionRoleSpecific qualifier valueSpecificitySpinalSpinal CordSpinal cord injuryStrokeTestingTimeTranscriptional RegulationTransgenic OrganismsTraumatic Brain InjuryVertebral columnWorkconditional knockoutcostdirected differentiationexperimental studyfunctional plasticitygain of functionhigh-throughput drug screeningin uteroin vivoloss of functionloved onesmotor controlmotor impairmentmotor recoveryneocorticalneurogenesisneuropeptide Ynoveloverexpressionpersonalized approachpost strokepostmitoticpostnatalregenerativerepairedsingle-cell RNA sequencingskillsspasticitystem cell differentiationstroke recoverytranscription factortranscriptomicstranslational neuroscience
项目摘要
Subcerebral projection neurons (SCPN) reside in the neocortex, and extend axons to subcerebral targets in the
brainstem and spinal cord. Corticospinal neurons (CSN), a subclass of SCPN, project to the spinal cord and their
axons form the corticospinal tract (CST), a critical circuit for voluntary motor control. In addition, projections from
the neocortex to brainstem targets function in parallel with CSN to exert motor control. Degeneration of these
projection neurons in amyotrophic lateral sclerosis (ALS), along with degeneration of spinal motor neurons,
causes spasticity and paralysis. In humans, damage to the CST after spinal cord injury is a principal cause of
loss of voluntary motor control. Further, integrity of corticospinal connectivity is centrally linked to recovery from
stroke and cerebral palsy. There have been multiple investigations detailing the role of cortico-brainstem vs.
corticospinal projections in both motor control, as well as their distinct contributions to functional recovery in
these distinct causes of paralysis. However, it remains unclear when and how these distinct projections are
established during development. Understanding the molecular basis of this specification and differentiation
during development therefore holds significant promise in establishing approaches that are tailored to enhancing
plasticity of these related, yet distinct circuits. A necessary first step toward this ultimate goal is to identify the
molecular mechanisms directing SCPN axons to brainstem (cortico-brainstem neurons) versus spinal cord
(CSN). Ongoing work in our lab has identified that such projections are initially specified during the process of
axon extension during development. We have identified that cortico-brainstem and corticospinal neurons express
distinct genes and can be molecularly distinguished in mice by birth. Further our data suggest that the
transcriptional regulator Satb2 acts, in part, to specify cortico-brainstem neurons. This proposal investigates the
hypothesis that transcriptional regulation controls the development of cortico-brainstem vs. corticospinal
projections by late embryonic development in mice. Building on this foundation, we will first identify the time point
in development when these projections are specified using knock-in Cre reporter mice (Aim 1). This will be tested
using intracerebral injections of AAV-reporters at distinct developmental times in utero with adult analysis of
axonal projections. In Aim 2, we will investigate the transcriptional targets of Satb2 in SCPN at later
developmental times by profiling all SCPN in Satb2 WT and conditional KO mice, as well as by Satb2
overexpression, at single cell resolution. Finally, in Aim 3 using subpopulation-specific transgenic Cre lines, we
will investigate SCPN axon targeting in both Satb2 loss- and gain-of-function. In addition, we will investigate
whether misexpression of Satb2 target genes can alter SCPN targeting to the brainstem vs. spinal targets.
Together, our work will discern in-depth, the mechanisms of when and how transcriptional regulation controls
SCPN segmental “identity” thereby providing a mechanistic framework for subsequent identification of molecules
controlling segmentally appropriate SCPN connectivity with subcerebral targets.
大脑下投射神经元(SCPN)位于新皮质中,并将轴突延伸至大脑下目标
脑干和脊髓神经元 (CSN) 是 SCPN 的一个亚类,投射到脊髓及其神经元。
轴突形成皮质脊髓束(CST),这是自主运动控制的关键回路。
新皮质到脑干的目标与 CSN 并行发挥运动控制的作用。
肌萎缩侧索硬化症(ALS)中的投射神经元以及脊髓运动神经元的退化,
在人类中,脊髓损伤后 CST 受损是导致痉挛和瘫痪的主要原因。
此外,皮质脊髓连接的完整性与自主运动控制的丧失密切相关。
已经有多项研究详细说明了皮质脑干与脑干的作用。
运动控制中的皮质脊髓投射,以及它们对功能恢复的独特贡献
然而,目前尚不清楚这些不同的预测何时以及如何发生。
了解该规范和分化的分子基础。
因此,在开发过程中,在建立专门的方法以增强
这些相关但又不同的电路的可塑性,实现这一最终目标的第一步是确定这些电路的可塑性。
将 SCPN 轴突引导至脑干(皮质脑干神经元)与脊髓的分子机制
(CSN)我们实验室正在进行的工作已经确定,此类预测最初是在过程中指定的。
我们已经确定皮质脑干和皮质脊髓神经元在发育过程中表达轴突延伸。
我们的数据进一步表明,不同的基因可以在小鼠出生时进行分子区分。
转录调节因子 Satb2 的部分作用是指定皮质脑干神经元。
假设转录调控控制皮质脑干与皮质脊髓的发育
在此基础上,我们将首先确定时间点。
在开发中,当使用敲入 Cre 报告小鼠指定这些投影时(目标 1)。
在子宫内不同发育时期使用 AAV 报告基因脑内注射,并进行成人分析
在目标 2 中,我们稍后将研究 SCPN 中 Satb2 的转录靶标。
通过分析 Satb2 WT 和条件 KO 小鼠以及 Satb2 中的所有 SCPN 来确定发育时间
最后,在目标 3 中,我们使用亚群特异性转基因 Cre 系进行过表达。
将研究 SCPN 轴突靶向 Satb2 功能丧失和获得的情况。
Satb2 靶基因的错误表达是否会改变 SCPN 对脑干和脊髓靶标的靶向。
我们的工作将共同深入探讨转录调控何时以及如何控制的机制
SCPN 分段“身份”为后续分子识别提供了机械框架
控制与大脑下目标的分段适当的 SCPN 连接。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vibhu Vinodchandra Sahni其他文献
Vibhu Vinodchandra Sahni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vibhu Vinodchandra Sahni', 18)}}的其他基金
Using Natural Mouse Movement to Establish a Developmental "Biomarker" for Corticospinal Damage
利用自然小鼠运动建立皮质脊髓损伤的发育“生物标志物”
- 批准号:
10667807 - 财政年份:2023
- 资助金额:
$ 46.38万 - 项目类别:
相似国自然基金
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
人类胎盘合体滋养层形成分子机制及其与子痫前期发生关联的研究
- 批准号:31900602
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Gene regulatory network control of olfactory cortex cell type specification
嗅觉皮层细胞类型规范的基因调控网络控制
- 批准号:
10656692 - 财政年份:2023
- 资助金额:
$ 46.38万 - 项目类别:
Human brain multi-omics to decipher major depression pathophysiology
人脑多组学破译重度抑郁症病理生理学
- 批准号:
10715962 - 财政年份:2023
- 资助金额:
$ 46.38万 - 项目类别:
High resolution genomic and epigenomic mapping of the human salivary gland
人类唾液腺的高分辨率基因组和表观基因组图谱
- 批准号:
10727190 - 财政年份:2023
- 资助金额:
$ 46.38万 - 项目类别:
In vivo precision genome editing to correct genetic disease
体内精准基因组编辑以纠正遗传疾病
- 批准号:
10771419 - 财政年份:2023
- 资助金额:
$ 46.38万 - 项目类别:
Mechanistic studies of the genetic contribution of desmoplakin to pulmonary fibrosis in alveolar type 2 cells
桥粒斑蛋白对肺泡2型细胞肺纤维化的遗传贡献机制研究
- 批准号:
10736228 - 财政年份:2023
- 资助金额:
$ 46.38万 - 项目类别: