Brain Recovery after Cardiac Arrest with Metabolic Glycoengineered Stem Cells
代谢糖工程干细胞促进心脏骤停后的大脑恢复
基本信息
- 批准号:10201773
- 负责人:
- 金额:$ 33.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAlzheimer&aposs DiseaseAreaBrainBrain InjuriesBrain IschemiaCarbohydratesCardiopulmonary ResuscitationCause of DeathCell AdhesionCell Differentiation processCell SurvivalCell TherapyCell-Cell AdhesionCellsClinicalDataDevelopmentDiseaseElectrophysiology (science)FutureGlycocalyxGoalsHeart ArrestHistologyHomingHospitalsHumanHuntington DiseaseIn VitroIncidenceInduced Heart ArrestInjuryInterventionInvestigationIschemiaMagnetic Resonance ImagingMedicalMetabolicMethodsModelingModificationMolecularMonosaccharidesMultiple SclerosisNeurodegenerative DisordersNeurologic DeficitNeurological outcomeNeuronal DifferentiationNeuronal InjuryNeuronsOutcomeParkinson DiseasePharmacologyPolysaccharidesRattusRecoveryRecovery of FunctionRegenerative MedicineReperfusion InjurySafetySialic AcidsSignal PathwaySiteStem cell transplantStrokeSulfhydryl CompoundsSurfaceSurface PropertiesSurvivorsTechniquesTechnologyTherapeuticTimeTranslatingTransplantationTraumaTreatment Efficacyanalogbasebeta cateninbrain repaircell typeclinical applicationclinical translationcostefficacy evaluationfunctional outcomesimprovedin vivoin vivo Modelinnovationmigrationnatural hypothermianerve injurynerve stem cellnovelnovel strategiesnovel therapeutic interventionnovel therapeuticsout-of-hospital cardiac arrestpreclinical studyrelating to nervous systemrepairedstem cell differentiationstem cell therapystem cellsstructural glycoproteinsuccesssugar
项目摘要
Project Summary
Cardiac arrest (CA) has an incidence of 359,800 annually. Among survivors of CA, brain injury is the biggest
impediment to functional recovery. Currently, neither pharmacological intervention nor therapeutic
hypothermia can reverse the neural injury caused by CA. Stem cell therapy holds significant promise in the
neuronal repair after brain injury. However, poor viability and integration at the site of injury and lack of efficient
differentiation into the desired cell types hinder clinical applications. E
merging
metabolic glycoengineering
(MGE) technology by modification of surface glycans impacts cell adhesion and differentiation in vitro, however,
has not been investigated in the context of stem cell therapy. Therefore, the overall aim of this proposal is to
apply MGE to cell-based therapies to improve cell adhesion and viability after transplantation and enhance the
treatment efficacy to repair damaged neurons in ischemia brain after CA. The specific aims are:
Aim1: With our novel MGE technique, we hypothesize that a novel glycan-based intervention is able to
promote human neural stem cell (hNSCs) neural differentiation and cell adhesion in vitro. We will develop and
optimize novel thiolated ManNAc analogs with longer alkyl chains, Ac5ManNPropT and Ac5ManNButT, that are
predicted to increase thiol accessibility and promote hNSCs cell adhesion and neural differentiation in vitro.
Aim2: With optimized ManNAc analogs, we hypothesize that treated hNSCs will promote the survival,
distribution, and differentiation of transplanted hNSCs in vivo. We will evaluate the effect of glycoengineered
hNSCs on functional outcome after CA and optimize this cell-based therapy.
Aim 3: With expected improvement in outcome after CA, we hypothesize that the success of the cell-
based intervention is due to improved survival and differentiation of transplanted glycoengineered hNSCs. We
will explore cellular interactions and molecular mechanisms after glycoengineered hNSC transplantation after
CA through Wnt/β-catenin signaling pathways.
The Significance lies in the combination of the MGE technique and stem cell therapy for repairing brain injury
post-CA, optimization of cell-based therapy towards clinical translation, and the expected discovery of the
mechanism underlying improved survival and differentiation after glycoengineered NSC transplantation. The
innovation lies in our innovative hypothesis to modify stem cell surface properties by MGE technology to
improve cell survival and differentiation, our novel and effective MGE method with low cost for modifying surface
glycans of hNSCs, and our use of the MGE technique in important disease in vivo model to develop novel
therapeutic cell-based intervention. Our study will lead to the development of novel therapeutic strategies to
repair brain injury towards future clinical interventions and maximize the benefits of MGE and stem cell therapy
based on the new findings. The use of sugar analog molecules for regenerative medicine and stem cell therapies
will help improve cells based therapy to repair brain injury due to CA, stroke, and trauma, or neurodegenerative
diseases, and have tremendous potential to provide a profound medical advance.
项目概要
心脏骤停 (CA) 每年的发病率为 359,800 例,其中脑损伤最为严重。
目前,既没有药物干预也没有治疗障碍。
低温可以逆转CA引起的神经损伤,干细胞疗法在该领域具有重大前景。
然而,脑损伤后的神经修复能力较差,缺乏有效的修复方法。
E. 分化为所需的细胞类型阻碍了临床应用。
合并
代谢糖工程
(MGE)技术通过修饰表面聚糖影响体外细胞粘附和分化,然而,
尚未在干细胞治疗的背景下进行研究,因此,该提案的总体目标是
将 MGE 应用于基于细胞的疗法,以改善移植后的细胞粘附和活力,并增强
修复CA后缺血脑损伤神经元的治疗效果具体目标是:
目标 1:通过我们新颖的 MGE 技术,我们追求一种新颖的基于聚糖的干预措施能够
我们将在体外开发和促进人类神经干细胞(hNSC)的神经分化和细胞粘附。
优化具有更长烷基链的新型硫醇化 ManNAc 类似物 Ac5ManNPropT 和 Ac5ManNButT,它们是
预计可增加硫醇可及性并促进体外 hNSC 细胞粘附和神经分化。
目标 2:通过优化的 ManNAc 类似物,我们敢于相信经过处理的 hNSC 将促进存活,
我们将评估糖基工程的效果。
hNSC 对 CA 后功能结果的影响并优化这种基于细胞的疗法。
目标 3:随着 CA 后结果的预期改善,我们发现细胞的成功-
基于糖基工程的干预是由于移植的糖基化 hNSC 的存活和分化得到改善。
将探索糖工程 hNSC 移植后的细胞相互作用和分子机制
CA 通过 Wnt/β-catenin 信号通路。
意义在于MGE技术与干细胞疗法相结合修复脑损伤
CA后,基于细胞的治疗向临床转化的优化,以及预期的发现
糖工程 NSC 移植后生存和分化改善的机制。
创新在于我们的创新假设是通过MGE技术改变干细胞表面特性
提高细胞存活和分化,我们新颖有效的 MGE 方法,表面修饰成本低
hNSC 的聚糖,以及我们在重要疾病体内模型中使用 MGE 技术开发新的聚糖
我们的治疗研究将导致新的治疗策略的发展。
修复脑损伤以适应未来的临床干预并最大限度地发挥 MGE 和干细胞治疗的益处
基于新的发现,糖类似物分子在再生医学和干细胞疗法中的应用。
将有助于改善基于细胞的疗法,以修复因 CA、中风、创伤或神经退行性疾病引起的脑损伤
疾病,并具有提供深远的医学进步的巨大潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaofeng Jia其他文献
Xiaofeng Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaofeng Jia', 18)}}的其他基金
Improving Brain Recovery Through Glycoengineering
通过糖工程改善大脑恢复
- 批准号:
10666616 - 财政年份:2022
- 资助金额:
$ 33.8万 - 项目类别:
Stem Cell Surface Modification to Promote Nerve Regeneration
干细胞表面修饰促进神经再生
- 批准号:
10543158 - 财政年份:2021
- 资助金额:
$ 33.8万 - 项目类别:
Stem Cell Surface Modification to Promote Nerve Regeneration
干细胞表面修饰促进神经再生
- 批准号:
10326864 - 财政年份:2021
- 资助金额:
$ 33.8万 - 项目类别:
Brain Recovery after Cardiac Arrest with Metabolic Glycoengineered Stem Cells
代谢糖工程干细胞促进心脏骤停后的大脑恢复
- 批准号:
10434716 - 财政年份:2018
- 资助金额:
$ 33.8万 - 项目类别:
Brain Recovery after Cardiac Arrest with Metabolic Glycoengineered Stem Cells
代谢糖工程干细胞促进心脏骤停后的大脑恢复
- 批准号:
9791036 - 财政年份:2018
- 资助金额:
$ 33.8万 - 项目类别:
Brain Recovery after Cardiac Arrest with Metabolic Glycoengineered Stem Cells
代谢糖工程干细胞促进心脏骤停后的大脑恢复
- 批准号:
9979983 - 财政年份:2018
- 资助金额:
$ 33.8万 - 项目类别:
Brain Monitoring and Therapeutic Hypothermia after Cardiac Arrest
心脏骤停后的脑部监测和低温治疗
- 批准号:
8831135 - 财政年份:2014
- 资助金额:
$ 33.8万 - 项目类别:
Brain Monitoring and Therapeutic Hypothermia after Cardiac Arrest
心脏骤停后的脑部监测和低温治疗
- 批准号:
9035424 - 财政年份:2014
- 资助金额:
$ 33.8万 - 项目类别:
Brain Monitoring and Therapeutic Hypothermia after Cardiac Arrest
心脏骤停后的脑部监测和低温治疗
- 批准号:
8842190 - 财政年份:2014
- 资助金额:
$ 33.8万 - 项目类别:
Brain Monitoring and Therapeutic Hypothermia after Cardiac Arrest
心脏骤停后的脑部监测和低温治疗
- 批准号:
8481969 - 财政年份:2013
- 资助金额:
$ 33.8万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 33.8万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 33.8万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 33.8万 - 项目类别:
Role of apoE-mediated meningeal lymphatic remodeling in the pathophysiology of Alzheimer’s disease
apoE 介导的脑膜淋巴重塑在阿尔茨海默病病理生理学中的作用
- 批准号:
10734287 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别: